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Overlapping Communities Explain
Core-Periphery Organization of Networks

Jaewon Yang and Jure Leskovec

Abstract—Networks provide a powerful way to study complex systems of interacting objects. Detecting network
communities—groups of objects that often correspond to functional modules—is crucial to understanding social,
technological, and biological systems. Revealing communities allows for analysis of system properties that are invisible
when considering only individual objects or the entire system, such as the identification of module boundaries and
relationships or the classification of objects according to their functional roles. However, in networks where objects
can simultaneously belong to multiple modules at once, the decomposition of a network into overlapping communities
remains a challenge.
Here we present a new paradigm for uncovering the modular structure of complex networks, based on a decomposition
of a network into any combination of overlapping, non-overlapping, and hierarchically organized communities. We
demonstrate on a diverse set of networks comping from a wide range of domains that our approach leads to more
accurate communities and improved identification of community boundaries. We also unify two fundamental organizing
principles of complex networks: the modularity of communities and the commonly observed core-periphery structure. We
show that dense network cores form as an intersection of many overlapping communities. We discover that communities
in social, information, and foodweb networks have a single central dominant core while communities in protein-protein
interaction as well as product co-purchasing networks have small overlaps and form many local cores.

Index Terms—Networks, Community detection, Ground-truth communities, Core-periphery structure.
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1 INTRODUCTION

N ETWORKS provide a way to represent systems
of interacting objects where nodes denote ob-

jects (people, proteins, webpages) and edges be-
tween the objects denote interactions (friendships,
physical interactions, links). Nodes in networks
organize into communities [1], which often corre-
spond to groups of nodes that share a common
property, role or function, such as functionally re-
lated proteins [2], social communities [3], or top-
ically related webpages [4]. Communities in net-
works often overlap as nodes might belong to mul-
tiple communities at once. Identifying such over-
lapping communities in networks is a crucial step
in studying the structure and dynamics of social,
technological, and biological systems [2], [3], [4],
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[5]. For example, community detection allows us
to gain insights into metabolic and protein-protein
interactions, ecological foodwebs, social networks
like Facebook, collaboration networks, information
networks of interlinked documents, and even net-
works of co-purchased products [6], [7], [8], [9],
[10], [11], [12]. In particular, communities allow for
analysis of system properties that cannot be studied
when considering only individual objects or the
entire system, such as the identification of module
boundaries and relationships and the classification
of objects according to their functional roles [13],
[14], [15], [16], [17].

Here we explore the community structure of
a number of networks from many domains. We
distinguish between structural and functional defini-
tions of communities [18]. Communities are often
structurally defined as sets of nodes with many
connections among the members of the set and
few connections to the rest of the network [1].
Communities can also be defined functionally based
on the function or role of its members. For example,
functional communities may correspond to social
groups in social networks, scientific disciplines or
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research groups in scientific collaboration networks,
and biological modules in protein-protein interac-
tion networks. The premise of community detection
is that these functional communities share some
degree share some common structural signature,
which allows us to extract them from the network
structure.

Based on this distinction one can state that the
goal of community detection is to build a bridge
between network structure and function. That is,
to identify communities based on the network
structure with the aim that such structurally iden-
tified communities would correspond to functional
communities. Thus, the aim is to use community
detection to identify functional communities based
on their structural connectivity patterns.

In this paper we build on this view of network
community detection and identify networks where
we can obtain reliable external labels of functional
communities. We refer to such explicitly labeled
functional communities as ground-truth communi-
ties [18]. We study structural properties of such
ground-truth functional communities and find that
they exhibit a particular structural pattern. We dis-
cover that the probability of nodes being connected
increases with the number of ground-truth commu-
nities they share. Our observation means that nodes
residing in overlaps of ground-truth communities
are more densely connected than nodes in the non-
overlapping parts of communities. Interestingly, we
also find that assumptions behind many existing
overlapping community detection methods lead to
the opposite conclusion that the more communities
a pair of nodes shares, the less likely they are
to be connected [6], [7], [8], [9], [10], [11]. Thus,
as a consequence many overlapping community
detection methods may not be able to properly
detect ground-truth communities.

Based on the above observations we develop
a new overlapping community detection method
Community-Affiliation Graph Model (AGM), which
views communities as overlapping “tiles” and the
tile density corresponds to edge density [19]. Fig-
ure 1 illustrates the concept. Our methodology de-
composes the network into a combination of over-
lapping, non-overlapping, and hierarchically orga-
nized communities. We compare AGM to a number
of widely-used overlapping and non-overlapping
community detection methods [6], [7], [10], [20] and
show that AGM leads to more accurate functional
communities. On average, AGM gives 50% relative
improvement over existing methods in assigning

(a)

(c)

(b)

Fig. 1: Communities as tiles. (a) Communities in net-
works behave as overlapping tiles. (b) Many methods
view communities as clusters with a homogeneous edge
density and thus they may break the tiles. (c) Our AGM
methodology successfully decomposes the network into
different tiles (communities).

nodes to their ground-truth communities in social,
co-authorship, product co-purchasing, and biologi-
cal networks.

Finally, we unify two fundamental organiz-
ing principles of complex networks: overlapping
communities and the commonly observed core-
periphery structure. While network communities
are often thought of as densely linked clusters
of nodes, in core-periphery network structure,
the network is composed of a densely connected
core and a sparsely connected periphery [21],
[22], [23]. Many large networks may exhibit core-
periphery structure. The network core was tradi-
tionally viewed as a single giant community and
therefore it was conjectured that the core lacks inter-
nal communities [24], [25], [26], [27]. We unify those
two organizing principles and show that dense
network cores form as a result of many overlapping
communities. Moreover, we find that foodweb, so-
cial, and web networks exhibit a single dominant
core while protein-protein interaction and product
co-purchasing networks contain many local cores
formed around the central core.

Our methodology to decompose networks into
communities provides a powerful tool for study-
ing social, technological, and biological systems
by uncovering their modular structure. Our work
represents a new way of studying networks of
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Fig. 2: Three structural definitions of network com-
munities. Networks (top) and corresponding adjacency
matrices (bottom), where rows/columns denote nodes
and dots denote edges: (a) two non-overlapping com-
munities; (b) two overlapping communities where the
overlap is less connected than the non-overlapping parts
of communities; (c) two overlapping communities where
the nodes in the overlap are better connected. Based
on (c), we structurally define communities as analogous
to “tiles”, where community overlaps lead to higher
density of edges.

complex systems by bringing a shift in perspective
from defining communities as densely connected
nodes to conceptualizing them as overlapping tiles.

2 FROM STRUCTURAL TO FUNCTIONAL DEFI-
NITIONS OF COMMUNITIES

The traditional structural view of network commu-
nities is based on two fundamental social network
processes: triadic closure [28] and the strength of weak
ties theory [29], [30]. Under this view, structural
communities are often defined as corresponding
to sets of nodes with many “strong” connections
between the members of the community and few
“weak” connections with the rest of the network
(Figure 2a). However, in many domains nodes may
belong to multiple communities at once, and thus
the notion of structural communities has also been
extended to include overlapping, hierarchical, and
disassortative community structures [6], [31], [32],
[33], [34].

Despite great progress in the field, we find that
extending the traditional structural view to over-
lapping communities leads to an unnoticed con-
sequence that nodes in community overlaps are
less densely connected than nodes in the non-
overlapping parts of communities (Figure 2b). (Re-
fer to the extended version of the paper [35] for
details.) We find this hidden consequence to be
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Fig. 3: Community overlaps have higher edge density
than the non-overlapping parts of communities. Edge
probability P (k) as a function of the number of common
community memberships k in the social network (a)
and in the product co-purchasing network (b) (Table 1).
Results in (a) and (b) suggest that as nodes share multi-
ple communities, they are more likely to be connected,
which leads to higher edge density in community over-
laps as illustrated in Figure 2c.

present in many existing approaches to overlapping
community detection [6], [7], [8], [9], [10], [11].

We examine a diverse set of six networks drawn
from a wide range of domains including social, col-
laboration, and co-purchasing networks for which
we obtain explicitly labeled functional communi-
ties, which we refer to as the ground-truth com-
munities [18]. For example, in social networks we
take ground-truth communities to be social interest-
based groups to which people explicitly join. In
product networks, ground-truth communities cor-
respond to product categories [35]. Note we define
ground-truth communities based on common func-
tions or roles around which networks organize into
communities [18]. Ground-truth communities are
not defined based on some observed attribute or
property that the nodes share (for example, age, re-
ligion, or eye color in a case of a social network) [6].
The idea behind ground-truth communities is that
they would correspond to true functional modules
in complex networks. While the obtained ground-
truth labels may sometimes be noisy or incomplete,
consistency and robustness of the results suggests
that the ground-truth labels are overall reliable.1

By studying the structure of ground-truth com-
munities we find that two nodes are more likely
to be connected if they have multiple ground-truth
communities in common (Figure 3). For example, in
the LiveJournal online social network (Table 1), the
edge probability jumps from ∼ 10−6 for nodes that
share no ground-truth communities to 0.1 for nodes

1. Networks with ground-truth communities can be down-
loaded from http://snap.stanford.edu/agm.
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that have one ground-truth community in common
and keeps increasing all the way to 0.7 as nodes
share more communities (Figure 3a). This implies
that the area of overlap between two communities
has a higher average density of edges than an area
that falls in just a single community (Figure 2c).

Our observation is intuitive and consistent across
several domains. For example, proteins belong-
ing to multiple common functional modules are
more likely to interact [2], people who share mul-
tiple interests have a higher chance of becoming
friends [36], and researchers with many common
interests are more likely to collaborate [36].

2.1 Defining Structural Communities as Tiles

We think of communities as analogous to overlap-
ping “tiles”. Thus, just as the overlap of two tiles
leads to a higher tile height in the overlapping area,
the overlap of two communities leads to higher
density of edges in the overlap. (Figure 1 illustrates
the concept.) The composition of many overlapping
communities then gives rise to the global structure
of the network.

Conceptually, our methodology represents a shift
in perspective from structurally modeling commu-
nities as sets of densely linked nodes to model-
ing communities as overlapping tiles where the
network emerges as a result of the overlap of
many communities. Our structural definition of
communities departs from the strength of weak ties
theory [30] and is consistent with the earlier web of
group affiliations social network theory [37], which
postulates that edges arise due to shared commu-
nity affiliations.

Our findings here also have implications for the
understanding of homophily, which is one of the
primary forces that shape the formation of social
networks [36]. Homophily is the tendency of indi-
viduals to connect to others with similar tastes and
preferences. Based on [30], it has been commonly
assumed that homophily operates in “pockets” and
thus nodes that have neighbors in other communi-
ties are less likely to share the attributes of those
neighbors (as in Figures 2a, 2b). In contrast, our
results are implying pluralistic homophily where the
similarity of nodes is proportional to the number
of shared memberships/functions, not just their
similarity along a single dimension. In a multi-
dimensional network, the most central nodes are
those that have the most shared dimensions.

3 DECOMPOSITION OF NETWORKS INTO
COMMUNITIES

In order to model communities in a network
we define a Community-Affiliation Graph Model
(AGM) [19]. In our model, edges of the underlying
network arise due to shared community member-
ships (Figure 4a) [38], [39]. The AGM parameterizes
each community A with a single parameter pA. Two
nodes that belong to community A then form an
edge in the underlying network with probability
pA. Each community A generates edges between
its members independently; however, if two nodes
have already been connected, then the duplicate
edge is not included in the network.

The AGM naturally models communities with
dense overlaps (Figures 4a, 4b). Pairs of nodes that
belong to multiple common communities become
connected in the underlying network with a higher
probability, since for each shared community the
nodes are given an independent chance of forming
an edge.

The flexible nature of the AGM allows for
modeling a wide range of network community
structures, such as non-overlapping, hierarchically
nested, and overlapping communities (Figures 4c,
4e, 4d). Given a bipartite community affiliation
graph and a probability pA for each community A,
the AGM allows us to generate synthetic networks
with realistic community structures, a procedure
useful in and of itself.

Using the AGM, we can also identify and analyze
community structure of real-world networks. We
accomplish decomposition of a given network into
communities by fitting the AGM to the network
with tools of statistical inference. We combine a
maximum-likelihood approach with convex opti-
mization and a Monte Carlo sampling algorithm on
the space of community affiliation graphs [19], [35],
[40]. This technique allows us to efficiently search
for the community affiliation graph that gives the
observed network the greatest likelihood. To auto-
matically determine the number of communities in
a given network, we apply techniques from statisti-
cal regularization and sparse model estimation [35].

4 ACCURACY OF DETECTED COMMUNITIES

Next, we aim to infer functional communities based
only on the structure of a given unlabeled undi-
rected network.
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Fig. 4: Community-Affiliation Graph Model (AGM) [19]. (a) Squares represent communities and circles represent
the nodes of a network. Edges represent node community memberships. For each community A that two nodes
share they create a link independently with probability pA. The probability that a pair of nodes u, v creates a link is
thus p(u, v) = 1−

∏
A∈Cuv

(1−pA), where Cuv is the set of communities that u and v share. If u and v do not share any
communities, we assume they link with a small probability ε. (b) Network generated by the Community-Affiliation
Graph Model in (a). As pairs of nodes that share multiple communities get multiple chances to create edges, the
AGM naturally generates networks where nodes in the community overlaps are more densely connected than the
nodes in non-overlapping regions. (c–e) AGM is capable of modeling any combination of (c) non-overlapping, (d)
hierarchically nested, as well as (e) overlapping communities.

4.1 Qualitative Evaluation

As an illustrative example, we consider a Face-
book friendship network of a single user’s friends
(Figure 5a and Table 1). In order to obtain la-
bels for ground-truth communities, we asked the
user to manually organize his Facebook friends
into communities. The user classified his friends
into four communities corresponding to his high-
school, workplace, and two communities of univer-
sity friends. The visualization of the same network
using communities in Figure 5b shows that the
network in Figure 5a is in fact composed of the
overlaps of the four communities. In this example,
the goal of community detection is to identify the
communities in Figure 5b based only on the con-
nectivity structure of the network in Figure 5a.

Due to an implicit assumption that nodes in com-
munity overlaps are less densely connected than
nodes in the non-overlapping parts of communities
(Figure 2b), many overlapping community detec-
tion approaches [6], [7], [8], [9], [10], [11] fail to
properly detect communities in this network. For
example, Figures 5c, 5d, and 5e illustrate the result
of applying Clique Percolation [10], Link Cluster-

ing [6], and Mixed-Membership Stochastic Block
Model [7] to the Facebook network in Figure 5a.
We also give a formal argument that explains the
behavior of these methods in the Appendix A.1 and
the extended version [35].

When we use the AGM to analyze the Face-
book network, the AGM automatically detects four
communities (Figure 6), which is the same as the
number identified by the user. Moreover, the com-
munities detected by the AGM nearly perfectly
correspond to communities identified by the user.
The AGM correctly determines community over-
laps and community memberships for 94% of the
user’s friends.

4.2 Quantitative Evaluation
We also perform a large-scale quantitative evalu-
ation on AGM on biological, social, collaboration,
and product networks where functional communi-
ties are explicitly labeled [18]. The networks rep-
resent a wide range of sizes and edge densities,
as well as amounts of community overlap. We
compare the AGM to a number of widely used
overlapping and non-overlapping community de-
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Properties of Properties of
Network networks detected communities

N E 〈C〉 D 〈k〉 K 〈S〉 〈A〉
Facebook 183 2,873 0.56 2.80 31.40 4 70.8 1.5
Social network 3,997,962 34,681,189 0.28 6.47 17.35 29,774 83.3 0.6
Foodweb 128 2,075 0.33 1.90 32.42 5 54.4 2.1
Web graph 255,265 1,941,926 0.62 9.36 15.21 5,000 83.3 1.6
PPI network 1,213 2,556 0.33 10.50 4.21 40 31.6 1.0
Product network 334,863 925,872 0.40 15.00 5.53 9,020 50.0 1.3

TABLE 1: Network statistics and properties of detected communities. We consider the Facebook ego-network of a
particular user, the full LiveJournal online social network, the Florida bay foodweb network, the Stanford University
web graph, the literature-curated Saccharomyces cerevisiae protein-protein interaction (PPI) network, and the Amazon
product co-purchasing network. Network statistics: N : Number of nodes, E: Number of edges, 〈C〉: Average
clustering coefficient, D: Effective diameter, 〈k〉: Average node degree. Properties of detected communities: K:
Number of communities, 〈S〉: Average detected community size, 〈A〉: Average number of community memberships
per node. The networks vary from those with modular to highly overlapping community structure and represent a
wide range of edge densities. While the number of communities detected by AGM varies, the average community
size is quite stable across the networks. Average number of community memberships per node reveals that
communities in the foodweb overlap most pervasively, while in PPI and social networks overlaps are smallest.

tection methods [6], [7], [10], [20] and quantify
the correspondence between the explicitly labeled
ground-truth communities and the communities
detected by a given method. The performance met-
rics quantify the accuracy of the method in as-
signing nodes to their ground-truth communities.
(Refer to Appendix A.2 for further details.)

On a set of social, collaboration, and product
networsk AGM on average outperforms existing
methods by 50% in four different metrics that
quantify the accuracy in assigning nodes to their
ground-truth communities (Figure 11a). In particu-
lar, AGM gives a 50% relative improvement over
Clique Percolation [10]. Link Clustering [6] detects
overlapping as well as hierarchical communities
and AGM improves 61% over it. Similar levels of
improvement are achieved when comparing AGM
to other overlapping and non-overlapping meth-
ods [7], [20]. Furthermore, AGM gives a 14% rel-
ative improvement over Link Clustering using the
same networks and same data-driven benchmarks
as used in the Link Clustering work [6].

Furthermore, we also experiment with AGM on
a set of four different biological protein-protein in-
teraction networks. Remarkably, even though AGM
was developed based on insights gained on primar-
ily social networks, we find that AGM performs
surprisingly well on biological networks as well.
As performance metrics, we compute the aver-
age statistical significance of detected communities
(p-value) for the three types of Gene Ontology
(GO) [41]. We consider negative logarithm of aver-
age p-values for each of the three GO term types

as three separate scores. On average, the AGM
outperforms Link Clustering by 150%, CPM by
163%, Infomap by 148%, and MMSB for 12 times
(Figure 11b). Further experimental details are in
Appendix and [35].

Overall, the AGM approach yields substantially
more accurate communities. The success of our
approach relies on the AGM’s flexible nature,
which allows the AGM to decompose a given
network into a combination of overlapping, non-
overlapping, and hierarchical communities.

5 COMMUNITIES, PLURALISTIC HOMOPHILY,
AND CORE-PERIPHERY STRUCTURE

The AGM also makes it possible to gain well-
founded insights into the community structure of
networks. In particular, we discover that overlap-
ping communities lead to a global core-periphery
network structure. Core-periphery structure cap-
tures the notion that many networks decompose
into a densely connected core and a sparsely
connected periphery [21], [22]. The core-periphery
structure is a pervasive and crucial characteristic of
large networks [23], [24], [42].

We discover that a network core forms as a
result of pluralistic homophily where the connect-
edness of nodes is proportional to the number of
shared community memberships, and not just their
similarity along a single dimension or community.
Thus, the network core forms as a result of many
overlapping communities. The average number of
community memberships of a node decreases with
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Fig. 5: An example on a Facebook friendship network of a particular user. (a) Facebook friendship network
of a single user. (b) The same network but with communities explicitly labeled by the user: high-school friends,
colleagues at the workplace, and university friends with whom the user plays basketball and squash. Communities
are denoted by filled regions. Notice that nodes in the overlap of communities have higher density of edges. (c-e)
Results of applying (c) Clique Percolation, (d) Link Clustering, and (e) Mixed-Membership Stochastic Block Model
to the Facebook network.

Fig. 6: AGM on the Facebook network from Fig-
ure 5. AGM successfully decomposes the network into
different tiles (communities) and correctly determines
community overlaps as well as community memberships
for 94% of the nodes.

its distance from the center of the network (Fig-
ure 7). Moreover, the edge likelihood increases as
a function of community memberships (Figure 3).
Thus, the nodes in the center of the network have
higher density of edges than nodes in the periphery.

Therefore, we show that even in the presence of
many communities, pluralistic homophily leads to
dense community overlaps, which cause a global
core-periphery network structure.

A further examination of the amount of commu-
nity overlap reveals that social, web, and foodweb
networks in Table 1 have a single central dominant
core (Figure 8a). On the other hand, communities in
protein and product networks have small overlaps
and also form many local cores (Figure 8b). In par-
ticular, protein communities only slightly overlap
and form local cores as well as a small global core
(Figure 8d). Small overlaps of protein communities
can be explained by the fact that communities act as
functional modules, and it would be hard for the
cell to independently control heavily overlapping
modules [2], [6]. Communities of co-purchased
products can also be thought of as functional mod-
ules since the products in a community are bought
together for a specific purpose. On the other hand,
foodweb communities overlap pervasively while
forming a single dominant core. This leads to a
flower-like overlapping community structure (Fig-
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Fig. 7: Overlapping communities lead to global core-
periphery network structure. The average (and the 10th

percentiles) of the number of community memberships
〈m〉(d) as a function of its farness centrality d, defined
as the average shortest path length of a given node
to all other nodes of the network [3]. (a) LiveJournal
social network, (b) Saccharomyces cerevisiae PPI network.
Number of community memberships of a node decreases
with its farness centrality. Nodes that reside in the center
of the network (and have small shortest path distances
to other nodes of the network) belong to the highest
number of communities. This means that core-periphery
structure forms due to community overlaps. Communi-
ties in the periphery tend to be non-overlapping while
communities in the core overlap pervasively.

ure 8c), where tiles (communities) overlap to form
a single core of the network. The heavily overlap-
ping foodweb communities form due to the closed
nature of the studied Florida bay ecosystem [43].
Web communities overlap moderately and form a
single global core. Many of these communities form
around common interests or topics, which may
overlap with each other [4].

6 CONCLUSION

In closing, we note that our approach builds on the
previous work on community detection [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16]. We exam-
ine an implicit assumption of sparsely connected
community overlaps and find that regions of the
network where communities overlap have higher
density of edges than the non-overlapping regions.

We then rethink classical structural definitions of
communities and develop the AGM, which models
structural communities as overlapping tiles. Us-
ing our well-founded approach we find that all
networks considered in this study exhibit a core-
periphery structure where nodes that belong to
multiple communities reside in the core of the
network. However, networks have different kinds
of core-periphery structure depending on the mech-
anism for community formation in the networks.
Dense community overlaps also explain the mixed

success of present community detection methods
when applied to large networks [24], [27].

Our work also enhances our understanding of
homophily as one of the most fundamental social
forces. Homophily in networks has been tradition-
ally thought to operate in small pockets/clusters.
Thus, nodes that have neighbors in other commu-
nities were considered less likely to share prop-
erties of those neighbors. In contrast, our results
are implying pluralistic homophily where the sim-
ilarity of nodes’ properties is proportional to the
number of shared community memberships. In a
network, the most central nodes are those that have
the most shared properties/functions/communities
with others. More generally, our work provides a
shift in perspective from conceptualizing communi-
ties as densely connected sets of nodes to defining
them as overlapping tiles and represents a new way
of studying complex systems.

Acknowledgments. We thank R. Sosič, P. Mason,
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APPENDIX A
A.1 Detecting Densely Overlapping Communi-
ties

We next show that three popular community de-
tection methods Clique Percolation [10], [44]; Link
Clustering [6]; and Stochastic Block Model [7], [45]
cannot properly detect communities with dense
overlaps.

A.1.1 Clique Percolation
First, we analyze the Clique Percolation method
and show that it may not properly detect two
overlapping communities from Figure 2c. Clique
Percolation Method (CPM) has a single input pa-
rameter k which determines the size of the maximal
cliques that the algorithm looks for. For example,
Figure 9 shows the result of CPM on the network
of Figure 2c where the overlap between the two
communities is denser than the individual commu-
nities. When k = 3, CPM finds a community that
covers the whole network because the clique in the
overlap connects the cliques in the left community
and the right community, whereas CPM finds a
community of the overlap when k = 4.
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Fig. 8: Primary and secondary cores in networks. (a) The fraction of nodes C(a) in the largest connected component
of the induced subgraph on the nodes who belong to at least a communities. By thinking of a network as a valley
where peaks correspond to cores and peripheries to lowlands, our methodology is analogous to flooding lowlands
and measuring the fraction of the largest island. A high C(a) means that there is a single dominant core (peak),
while a low C(a) suggests the existence of nontrivial secondary cores. (b) Probability density P (o) of the maximum
overlap o. Maximum overlap oA of a given community A is defined as the fraction of A’s nodes that are in
the overlap with any other community. Communities in the PPI, social, and product co-purchasing networks are
mostly non-overlapping whereas the communities in the foodweb and the web graph are pervasively overlapping.
(c) Communities detected by the AGM in the foodweb form a single central core. (d) Communities in the PPI
network form many secondary cores.

In addition to Clique Percolation Method, there
are many other overlapping community detection
methods that are based on expanding the maximal
cliques. These methods (for example, Greedy clique
expansion [46] and EAGLE [47]) also suffer from
the same problem.

A.1.2 Stochastic Block Models

We show that three variants of stochastic block
models are unable to correctly discover communi-
ties with dense overlaps: the traditional Stochastic

Block Model [45], the Degree-Corrected Stochas-
tic Block Model [48] and the Mixed-Membership
Stochastic Block Model [7]. Based on the input
matrix from Figure 2c, all three models identify
three blocks as illustrated in Figure 10. The reason
for this is that the edge probability between two
nodes that belong to communities A and B is
weighted average of P (A,A) and P (B,B), where
P (X,Y ) is an edge probability between a node in
community X and a node in community Y . This
means that the edge probability between the two
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(a) kCPM = 3 (b) kCPM = 4

Fig. 9: Clique Percolation method cannot detect com-
munities with dense overlaps. Given a network with
two communities and a dense overlap, Clique Percola-
tion method would report a community that (depend-
ing on the parameter settings) either (a) includes both
communities, or (b) it would find a small community
consisting only of the overlap.

Fig. 10: The result of a Stochastic Block Model and
the Mixed-Membership Stochastic Block model on a
network of two communities with dense overlap. The
adjacency matrix of the network in Figure 2c is shown
and the bold lines denote the three partitions discovered
by the stochastic block models, where the overlap is
confused as a separate community.

nodes that share multiple communities is smaller
than the maximum of P (A,A) and P (B,B) (due
to the weighted summation). Therefore, the edge
probability between overlapping nodes cannot be
higher than the edge probability between nodes
in an individual community. We also note that
in principle one could apply post-processing of
communities detected by stochastic block models
to identify which of the detected structural commu-
nities actually correspond to overlaps of functional
communities. However, it is not immediately clear
how to develop such post-processing method.

A.1.3 Link Clustering
Lastly, we show that the Link Clustering [6] is not
able to correctly detect overlapping communities
with dense overlaps. Link Clustering performs hier-
archical clustering with the edges of the given net-
work based on the Jaccard similarity between the
adjacent nodes of the edges. Since edge density in

the area of community overlap is higher, this means
that the Jaccard similarity between the adjacent
nodes will be higher, which in turn means that Link
Clustering will identify the edges in the overlap
as a separate community. (Refer to the extended
version [35] for details.)

A.2 Metrics of Community Detection Accuracy

We focus the evaluation of community detection
methods on their ability to correctly identify over-
lapping communities.

To quantify the performance, we measure the
level of agreement between the detected and
the ground-truth communities. Given a network
G(V,E), we consider a set of ground truth com-
munities C∗ and a set of detected communities Ĉ,
where each ground-truth community Ci ∈ C∗ and
each detected community Ĉi ∈ Ĉ is defined by a
set of its member nodes. To compare Ĉ and C∗, we
use four performance metrics:

Average F1 score [49]: We compute Fg(Ci) =
maxj F1(Ci, Ĉj) for each ground-truth community
Ci and Fd(Ĉi) = maxj F1(Cj , Ĉi) for each detected
community Ĉi, where F1(S1, S2) is the harmonic
mean of precision and recall between two node sets
S1, S2. The average F1 score is 1

2(F̄g + F̄d) where
F̄g = 1

|C∗|
∑

i Fg(Ci) and F̄d = 1
|Ĉ|

∑
i Fd(Ĉi).

Omega Index [50]: For each pair of nodes u, v ∈
V , we define Cuv to be the set of ground-truth
communities to which both u and v belong and
Ĉuv to be the set of detected communities to which
the both nodes belong. Then the Omega Index is
1
|V |2

∑
u,v∈V 1{|Cuv| = |Ĉuv|}.

Normalized Mutual Information [12]: We com-
pute 1 − 1

2(H(C∗|Ĉ) + H(Ĉ|C∗)), where H(A|B)
is the extension of entropy when A,B are sets of
sets [12].

Accuracy in the number of communities: 1 −
||C∗|−|Ĉ||
|C∗| , which is the relative error in predicting

the number of communities.

A.3 Applying AGM to Social, Product, and Col-
laboration Networks

Figure 11a displays the composite performance
of each of the 5 methods over the six networks
with ground-truth communities. Overall, we notice
that AGM gives best overall performance on all
networks except the Amazon, where it ties with
MMSB. Furthermore, AGM detects highest qual-
ity communities for most individual performance
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metrics in all networks. On average, the composite
performance of AGM is 3.40, which is 61% higher
than that of Link Clustering (2.10), 50% higher
than that of CPM (2.41), 30% higher than that of
Infomap and 8% higher than that of MMSB (3.25).
The absolute average value of Omega Index of
AGM over the 6 networks is 0.46, which is 21%
higher than Link Clustering (0.38), 22% higher than
CPM (0.37), 5% higher than Infomap (0.44) and 26%
higher than MMSB (0.36).

In terms of absolute values of scores, AGM
archives the average F1 score of 0.57, average
Omega index of 0.46, Mutual Information of 0.15
and accuracy of the number of communities 0.42.
We also note that AGM also outperforms CPM with
other values of k (k = 3, 4, 6).

A.4 Applying AGM to Biological Networks
We also evaluate the performance of AGM on
the four types of protein-protein interaction (PPI)
networks of Saccharomyces cerevisiae [6]. As perfor-
mance metrics, we compute the average statistical
significance of detected communities (p-value) for
the three types of Gene Ontology (GO) terms (bio-
logical process, cellular component and molecular
function) [41]. We consider negative logarithm of
average p-values for each of the three GO term
types as three separate scores.

Figure 11b displays the composite performance
in the four PPI networks. We observe that the AGM
attains the best composite performance in all four
networks. On average, the composite performance
of AGM is 3.00, which is 150% higher than that
of Link Clustering (1.20), 163% higher than that
of CPM (1.14), 148% higher than that of Infomap
(1.21) and 12 times higher than that of MMSB (0.08).
We further investigated the poor performance of
MMSB on these networks and found it is due
to the fact that MMSB tends to find very large
communities consisting of more than 80% of the
nodes.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics
Reports, vol. 486, no. 3-5, pp. 75 – 174, 2010.

[2] N. Krogan, G. Cagney, H. Yu, et al., “Global landscape of
protein complexes in the yeast saccharomyces cerevisiae,”
Nature, vol. 440, no. 7084, pp. 637–643, 2006.

[3] S. Wasserman and K. Faust, Social Network Analysis. Cam-
bridge University Press, 1994.

[4] G. Flake, S. Lawrence, C. Giles, and F. Coetzee, “Self-
organization and identification of web communities,”
Computer, vol. 35, no. 3, pp. 66–71, 2002.

[5] M. Newman, Networks: An Introduction. Oxford Univer-
sity Press, Inc., 2010.

[6] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link commu-
nities reveal multi-scale complexity in networks,” Nature,
vol. 466, pp. 761–764, Oct. 2010.

[7] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing,
“Mixed membership stochastic blockmodels,” Journal of
Machine Learning Research, vol. 9, pp. 1981–2014, 2007.

[8] M. Sales-Pardo, R. Guimerà, A. Moreira, and L. A. N.
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