Science & technology | Biotechnology

A new opium pipe

Narcotic drugs could soon be manufactured by yeast

SYNTHETIC biology—the technique of moving genes from creature to creature not one at a time, but by the handful—promises much but has yet to deliver. Someone who believes it can, though, is Christina Smolke of Stanford University. And, as she and her colleagues write in Nature Chemical Biology, they think they now know one way that it might.

Opiates, such as morphine, are widely used as painkillers. Some are extracted directly from opium poppies (paler, as the picture shows, than the sort familiar in Europe and North America), which grow well in places such as Afghanistan and Turkey. Others, such as oxycodone, are chemically derived from natural poppy-molecules. Many of these drugs, though, are also used for recreational purposes—particularly diamorphine, an acetylated version of the principal poppy extract that was branded “Heroin” by its manufacturer, Bayer, in the late 19th century. Since such recreational use is generally illegal, the authorities keep a strict eye on the opium trade, and would no doubt welcome the chance to make that eye even stricter by cutting poppies out of the loop and making diamorphine and its cousins from scratch in facilities they can watch. That, plus the possibility the drugs might be produced more cheaply, has encouraged Dr Smolke to use synthetic biology to see if she can create an alternative source for opiates.

This article appeared in the Science & technology section of the print edition under the headline "A new opium pipe"

The criminalisation of American business

From the August 30th 2014 edition

Discover stories from this section and more in the list of contents

Explore the edition

More from Science & technology

Many mental-health conditions have bodily triggers

Psychiatrists are at long last starting to connect the dots

Climate change is slowing Earth’s rotation

This simplifies things for the world’s timekeepers


Memorable images make time pass more slowly

The effect could give our brains longer to process information