
Recommender: An Analysis of Collaborative Filtering
Techniques

Christopher R. Aberger
caberger@stanford.edu

ABSTRACT
Collaborative filtering is one of the most widely researched and
implemented recommendation algorithms. Collaborative filter-
ing is simply a mechanism to filter massive amounts of data
based upon a previous interactions of a large number of users.
In this project I analyze and benchmark several collaborative
filtering implementations in PowerGraph, an advanced machine
learning framework, across a variety of different sparse datasets.
My goal is to empirically discover the performance and algo-
rithmic tradeoffs of state-of-the-art techniques for collaborative
filtering on modern commodity multi-socket, multi-core, non-
uniform memory access (NUMA) hardware.

1. INTRODUCTION
Recommendation systems are composed of filtering algorithms

that aim to predict a rating or preference a user would assign
to a given item. Recommender systems have become increas-
ingly important across a variety of commercial domains includ-
ing movies (Netflix), restaurants (Yelp), friends (Facebook and
Twitter), and music (Pandora). These systems generally pro-
duce recommendations via one of two methods: 1) content based
filtering or 2) collaborative based filtering. Content based fil-
tering techniques use attributes of an item in order to recom-
mend future items with similar attributes. Collaborative fil-
tering builds a model from a user’s past behavior, activities, or
preferences and makes recommendations to the user based upon
similarities to other users [15]. Other work has aimed at creat-
ing hybrid systems which use a mix of content and collaborative
filtering based approaches [13].

While both content and collaborative filtering approaches have
their respective strengths and weaknesses collaborative filter-
ing’s main advantage is that it is capable of recommending
complex items without a prori knowledge about the item [15].
Therefore collaborative filtering is domain free while generally
providing more accuracy than content-based techniques [9]. Be-
cause of this collaborative filtering systems have been widely
used in machine learning research and practice.

Collaborative filtering algorithms typically suffer from three
main issues:

Cold Start A large amount of existing data is necessary to
make accurate recommendations for a given user.

Scalability In the era of big data many systems need to make
recommendations on datasets with millions of users and
products. Because of this a large amount of computational
power is necessary to compute timely recommendations.

Sparsity The number of items typically far exceeds the number
of users making our relations extremely sparse as most

active users will have only rated a small subset of the total
items.

In this project I analyze and benchmark the performance of
several state-of-the-art collaborative filtering algorithms in the
PowerGraph framework in order to identify the different im-
plementations of collaborative filtering that best mitigate the
aforementioned scalability and sparsity problems [5]. Here I run
a variety of tuned collaborative filtering algorithms at scale on
modern commodity multi-socket, multi-core, non-uniform mem-
ory access (NUMA) hardware. I benchmark and analyze paral-
lel matrix factorization collaborative filtering implementations
in the PowerGraph framework on the datasets in Table 1. The
matrix factorization algorithms benchmarked are the following:

• Stochastic Gradient Descent (SGD)

• Bias Stochastic Gradient Descent (B-SGD)

• Alternating Least Squares (ALS)

• Weighted Alternating Least Squares (W-ALS)

2. COLLABORATIVE FILTERING PROBLEM
Collaborative filtering identifies patterns of user intersets to

make targeted recommendations. Collaborative filtering breaks
down into two primary approaches memory-based and model-
based approaches.1 Each approach is described briefly in the fol-
lowing sections with a more in-depth explanation of the model-
based approaches benchmarked in this paper following in Sec-
tion 3.

2.1 Memory-Based
The memory-based approach takes user rating data to com-

pute similarities between users and items in order to make a rec-
ommendation. The most famous memory-based approach are
neighbohood-based algorithms. Neighborhod-based algorithms
focus on computing the relationship between either items or
users. Here a recommendation for a user is predicted based
upon ratings of similar (or neighboring) items by the same user.
The neighborhood-based algorithm calculates the similarity be-
tween two users or items then producing a prediction for the
user by taking the weighted average of all ratings. A popular
way to compute the similarity between two users x and y is to
use the cosine similarity where Ixy is the set of items rated by
both users x and y:

1Hybrid approaches between memory-based and model-based
collaborative filtering algorithms are often used in practice. Due
to the complexity of developing hybrid solutions they are outside
the scope of this project.

Dataset Number of Ratings Number of Users Number of Items Description

Amazon [1] 5,838,041 2,146,057 1,230,915 Product ratings from Amazon.
BookCrossing [2] 433,652 77,802 185,955 Book ratings.
Epinions [3] 13,668,320 120,492 755,760 Epinion product ratings.
MovieLens [4] 10,000,054 69,878 10,677 Movie ratings.

Table 1: Rating datasets used in the experiments.

similarity(x, y) = cos(~x, ~y) =

∑
i∈Ixy

rx,iry,i√ ∑
i∈Ix

r2x,i

√ ∑
i∈Iy

r2y,i

After identifying the top-K most similar users to an active
user the corresponding user-item matrices are aggregated to
choose the set of items to be recommended.2 This approach
is commonly called the K-nearest neighbor (KNN) algorithm.
While it is relatively simple to compose and explain this algo-
rithms performance degrades as the data becomes increasingly
sparse and does not typically work well on large datasets, which
occur frequently in practice [15].

2.2 Model-Based
Model-based (or matrix factorization based) methods build

models based on modern machine learning algorithms discover-
ing patterns in the training data. The models are then used to
make predictions on real data. Model-based approaches uncover
latent factors which can be used to construct the training data
ratings. Model-based methods have become widely popular re-
cently as they handle sparsity better than their memory-based
counterparts while improving prediction accuracy [15].

Model-based methods are often classified as latent factor mod-
els. Here the ratings are explained by characterizing both items
and users on a number of factors inferred from the ratings pat-
terns [9]. Most algorithms take a rating matrix, which is ex-
tremely sparse and build a linear model finding two low dimen-
sional matrices. Formally let R = {rij}nu×nv be a user-item
matrix where each item Rij represents the rating score of item
j by user i with the value being either a real number or missing
[17]. Here nu designates the number of users and nv designates
the number of items. In this setup, collaborative filtering is de-
signed to estimate missing values in R based upon the known
values.

The collaborative filtering problem typically starts with a low-
rank approximation of the user-item matrix R and then mod-
els both users and movies by giving them coordinates in a low
dimensional feature space. Both the users and items have in-
dividual feature vectors where the rating of an item by a user
is modeled as the inner product of the desired user and movie
feature vectors. Let U represent the user feature matrix and
V represent the item feature matrix composed of both user and
item feature vectors respectively. A visualization of this is given
in Figure 1 where the items are movies and d is the number of
features. The dimension of the feature space, or d, is a system
parameter that is determined by a hold-out dataset or cross-
validation.

2Another popular way to compute similarity is Pearsons equal-
ity which is not discussed in this paper but is a slight variant of
the computation above.

Figure 1: Visualization of Model-Based Collaborative Filtering
Computation. Image taken from GraphLab website.

Ideally ri,j =< ui, vj > ∀i, j, but in practice we need to
minimize loss functions of U and V to obtain these matrices.
The loss function minimized for the learning aglorithms run in
this paper is the root mean square error (RSME). Therefore,

RMSE =

√
1

n

∑
u,v

|(pu,v − ru,v)2|

where pu,v and ru,v are predicted and observed ratings for
user u and item v respectively [11]. Here the predicted value is
computed via the following equation:

pi,j =< ui, vj >

The low rank approximation problem is thus formulated as
follows to learn the factor vectors (ui, vj):

(ui, vj) = min
u,v

∑
(u,i)∈K

(pu,v − ru,v)2

This problem has (nu+nv)∗d free parameters that need to be
determined. The set of known ratings K is a sparse matrix and
thus is much smaller than the size of it’s dense counterpart nunv

elements. Therefore solving the low rank approximation prob-
lem as formulated above usually overfits the data [17]. In order
to avoid overfitting a common technique is to use Tikhonov reg-
ularization to transform the low rank approximation problem
into the following:

(ui, vj) = min
u,v

∑
(i,j)∈K

(pi,j − ri,j)2 + λ(||ui||2 + ||vj ||2)

3. MATRIX FACTORIZATION ALGORITHMS
In this section the matrix factorization algorithms (model-

based methods) run for the experiments are described.

3.1 Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent computes a single prediction pij

and it’s error:

eij = pij − rij

The parameters of this algorithm are updated by a magnitude
propotional to the learning rate α in the opposite direction [9]
of the gradient resulting in the following update rules:

ui := ui + α(eij v̇j − αu̇i)

vj := vj + α(eij u̇i − αv̇j)

The implementation of SGD benchmarked for this paper uses
an adapative learning rate that has a constant multiplicative
step decrease of 0.9.

3.2 Bias Stochastic Gradient Descent (B-SGD)
Bias stochastic gradient descent is similar to the classic Sec-

tion 3.1 with a different objective function. B-SGD tries to
take advantage of biases in users and items. For example a
item might be consistently rated higher by all users because it
is a good item [9]. B-SGD incorporates this knowledge into its
model by introducing a bias of rating ri,j derived as follows:

bi,j = µ+ bi + bj

In this equation µ is the overal average rating, bi is the ob-
served deviations of user i, and bj is the observed deviations of
item j. New ratings are now predicted as:

pi,j =< ui, vj > +bi,j

Finally the objective function to be minimized now becomes:

(ui, vj) = min
u,v

∑
(i,j)∈K

(pi,j−bi,j−ri,j)2+λ(||ui||2+||vj ||2+b2i +b2j)

3.3 Alternating Least Square (ALS)
Alternating Least Squares rotates between fixing one of the

unknowns ui or vj . When one is fixed the other can be com-
puted by solving the least-squares problem. This approach is
useful because it turns the previous non-convex problem into
a quadratic that can be solved optimally [9]. A general de-
sctiption of the algorithm for ALS algorithm for collaborative
filtering taken from Zhou et. al [17] is as follows:

Step 1 Initialize matrix V by assigning the average rating for
that movie as the first row, and small random numbers for
the remaining entries.

Step 2 Fix V , solve U by minimizing the RMSE function.

Step 3 Fix U , solve V by minimizing the RMSE function sim-
ilarly.

Step 4 Repeat Steps 2 and 3 until convergence.

3.4 Weighted Alternating Least Square (W-ALS)
Weighted alternating least squares is an algorithm very sim-

ilar in spirit to the one described in Section 3.3 but with a
different objective function. W-ALS is aimed at trying to op-
timize collaborative filtering algorithms for datasets that are
derived off of implicit ratings. An example of implicit ratings is
a cable company assigning user ratings of channels based upon
the amount of time the user watches that channel. Here it is
not explicity clear that the user likes the channel just because
they watch it for a large time period. W-ALS introduces differ-
ent confidence levels for which items are preferred by the user
changing the objective function to be minimized to:

Figure 7: Memory Usage of Algorithms on MovieLens Dataset
with 48 threads.

(ui, vj) = min
u,v

∑
(i,j)∈K

ci,j(pi,j − ri,j)2 + λ(||ui||2 + ||vj ||2)

Here ci,j measures the confidence of the predicted preference
pi,j . There are many ways to compute the confidence level [6]
but the algorithm benchmarked in this paper uses the following:

ci,j = 1 + αlog(1 + ri,j/ε)

4. EXPERIMENTS
In this section I present and analyze several model based im-

plementations run on a number of datasets at scale on commod-
ity NUMA hardware.

4.1 Experimental Setup
I ran all experiments on a single machine with four NUMA

nodes, each equipped with an 12-core Intel Xeon E5-4657L v2
CPU and 256 GiB of RAM. The machine was running Ubuntu
12.04 LTS and we used g++ 4.6.4 for compilation. I mea-
sured the wall-clock time for each algorithm to complete on
all datasets listed and do not count the time used for data load-
ing for the system. In addition, I monitor the memory usage of
each system by recording the amount allocated for process by
the operating system.

For each dataset I ran each algorithm on a fixed training and
validation sets. I held out 30% of the total samples for the val-
idation set while training on the remaining 70% of the original
data. I report both training and validation errors. I run with
the default PowerGraph engine and scheduler arguments.

Because the purpose of this project is to benchmark which
algorithm performs the best at scale on modern hardware I at-
tempt to fix as many variables as possible. I used a fixed number
of features D = 25 for all datasets and algorithms. In addition I
ran all algorithms for a 5 iterations measuring RMSE, memory
usage, and updates per second for comparison. I sweep the pa-
rameter space for λ and step size to select the parameters giving
the best validation error on each dataset.

4.2 Parameter Tuning
In order to select valid λ and SGD gradient step sizes I run a

parameter sweep to find which values gave me the lowest RMSE
on each dataset. The parameter sweeps are shown in Figures
2,3,4, and 5. Table 2 shows the final error of all algorithms
across all datasets while using the best observed parameters.

(a) SGD Amazon λ Selection (b) SGD Amazon Step Size Selection (c) ALS Amazon λ Selection

Figure 2: Validation of Parameter Choices for Amazon Dataset

(a) SGD BookCrossing λ Selection (b) SGD BookCrossing Step Size Selection (c) ALS BookCrossing λ Selection

Figure 3: Validation of Parameter Choices for BookCrossing Dataset

(a) SGD Epinion λ Selection (b) SGD Epinion Step Size Selection (c) ALS Epinion λ Selection

Figure 4: Validation of Parameter Choices for Epinion Dataset

(a) SGD MovieLens λ Selection (b) SGD MovieLens Step Size Selection (c) ALS MovieLens λ Selection

Figure 5: Validation of Parameter Choices for MovieLens Dataset

SGD B-SGD ALS W-ALS

Dataset Training Validation Training Validation Training Validation Training Validation

Amazon 2.44 2.91 0.60 1.43 0.66 2.85 0.34 3.02
BookCrossing 5.63 5.52 1.52 2.33 0.40 6.03 0.28 6.04
Epinions 3.38 3.38 0.81 0.84 0.63 2.13 0.40 1.46
MovieLens 2.20 2.23 1.01 1.02 0.66 0.92 0.66 0.95

Table 2: Training and Validation RMSE on Algorithms with 25 features.

(a) Amazon Dataset (b) BookCrossing Dataset (c) Epinions Dataset (d) MovieLens Dataset

Figure 6: Scaling Comparison of Different Algorithms Across Datasets

4.3 Benchmarking Results
The performance of each algorithm on all datasets run using

various numbers of threads can be seen in Figure 6 which when
used in comparison to Table 2 provides the performance and ac-
curacy tradefoff of each dataset and algorithm. Finally, Figure 7
shows the memory usage of each algorithm on the MovieLens
dataset when running with 48 threads.

For a scaling comparison I ran each dataset on 1, 12, 24, and
48 threads reporting the updates per second in the Figure 6.
Scaling often ceases or degrades at 48 threads which at first
might seem unexpected, but when one considers the underlying
NUMA architecture of the hardware memory access patterns
can explain this trend. Without replication of the data across
sockets the memory bandwidth of communication between sock-
ets exceeds the benefit of extra computational power.

In addition, one will notice that gradient descent is consis-
tently faster than alternating least squares in almost all cases.
Alternating least squares performs better on the MovieLens
dataset which is extremely sparse. Further, alternating least
squares often scales bettern than gradient descent, but typi-
cally does not overcome the performance loss that the algorithm
starts off with.

5. FUTURE WORK
In the future I plan to use the knowledge discovered here while

integrating collaborative filtering into my own framework for
shared memory sparse matrix computation. Here I have tight
control over the algorithms scaling and memory usage rather
than relying on the PowerGraph runtime, which is optimized
for distributed computation. Further, I want to benchmark col-
laborative filtering with using Hogwild!, a lock free method of
parallelizing stochastic gradient descent [14]. Finally, I want to
futher experiment with varying numbers of features rather than
using a fixed value.

6. CONCLUSION
In conclusion Bias Stochastic Gradient Descent appears to

be the most promising algorithm for all datasets except Movie-
Lens on a NUMA machine when optimizing for performance and
accuracy. The MovieLens dataset, which is extremely sparse,
works much better on alternating least squares providing higher
accuracy and better scaling on this extremely sparse dataset.
The data here did not run extremely well on weighted alter-
nating least squares which is not extremely suprising as this is
explicit rating data and weighted alternating least squares is
optimized for implicit rating data sources.

Finally, I learned that perhaps the most challenging part of
machine learning in practice is picking both the proper num-
ber of features and the proper algorithmic parameter values.

Without the theroy learned in this class, one cannot make these
decsisons in a reasonable fashion.

7. REFERENCES
[1] Amazon ratings network dataset – KONECT, Nov. 2014.

[2] Bookcrossing (ratings) network dataset – KONECT, Nov. 2014.
[3] Epinions product ratings network dataset – KONECT, Nov.

2014.
[4] Movielens 10m network dataset – KONECT, Nov. 2014.

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12,
pages 17–30, Berkeley, CA, USA, 2012. USENIX Association.

[6] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In Proceedings of the 2008 Eighth
IEEE International Conference on Data Mining, ICDM ’08,
pages 263–272, Washington, DC, USA, 2008. IEEE Computer
Society.

[7] Z. Huang, D. Zeng, and H. Chen. A comparison of
collaborative-filtering recommendation algorithms for
e-commerce. IEEE Intelligent Systems, 22(5):68–78, Sept. 2007.

[8] Y. Koren. Factorization meets the neighborhood: A
multifaceted collaborative filtering model. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’08, pages 426–434, New
York, NY, USA, 2008. ACM.

[9] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–37,
Aug. 2009.

[10] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale
graph computation on just a pc. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 31–46, Berkeley, CA, USA,
2012. USENIX Association.

[11] J. Lee, M. Sun, and G. Lebanon. A comparative study of
collaborative filtering algorithms. CoRR, abs/1205.3193, 2012.

[12] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Graphlab: A new framework for parallel
machine learning. CoRR, abs/1006.4990, 2010.

[13] P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted
collaborative filtering for improved recommendations. In
Proceedings of the Eighteenth National Conference on Artificial
Intelligence (AAAI-02), pages 187–192, Edmonton, Alberta,
2002.

[14] F. Niu, B. Recht, C. Re, and S. J. Wright. HOGWILD!: A
Lock-Free Approach to Parallelizing Stochastic Gradient
Descent. ArXiv e-prints, June 2011.

[15] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors.
Recommender Systems Handbook. Springer, 2011.

[16] X. Su and T. M. Khoshgoftaar. A survey of collaborative
filtering techniques. Adv. in Artif. Intell., 2009:4:2–4:2, Jan.
2009.

[17] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the netflix prize. In
Proceedings of the 4th International Conference on Algorithmic
Aspects in Information and Management, AAIM ’08, pages
337–348, Berlin, Heidelberg, 2008. Springer-Verlag.

