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Abstract—In this project, we develop a real time ASL Fin-
gerspelling translator using image processing and supervised
machine learning. More particularly, in the finished system an
Android smartphone is used to capture an image of a hand
gesture, which is the interpreted on an online server. The final
system is able to classify 24 different symbols with reasonable
accuracy.

I. INTRODUCTION

American Sign Language (ASL) is one of the main forms of
communication among the deaf communities in United States
and Canada. This motivates us to develop a translator that
can recognize hand symbols and give us the corresponding
meaning as output.

A subset of ASL is the American Manual Alphabet -
referred to as fingerspelling - which is used to spell out the
26 different letters of the English language using unique hand
gestures. A graphic illustrating this system is found in figure 1.
Of these symbols, 24 are static hand postures - the exceptions
being ’j’ and ’z’. In order to avoid excessive complexity, this
project will restrict itself to the reduced 24-letter alphabet
excluding ’j’ and ’z’.

In terms of the bigger picture, hand gesture recognition
technology can be applied to other problems as well, such
as interfacing with computers or machines through gestures.
Interpreting hand movements could also become a way of
logging and analyzing human behavior.

On the particular problem of fingerspelling interpretation,
there has been work done in the recent past. For instance, [1]
describes a method of fingerspelling translation using a Kinect
sensor. This is the case of a feature-based method of transla-
tion. Other approaches are known to employ methods based
on deep learning with convolutional neural networks (CNNs),
where feature extraction is unnecessary since CNNs are end-
to-end solutions. Recently these deep learning approaches take
up a dominant position in sign language detection and other
computer vision classification problems.

The approach taken here represents an attempt to create an
effective feature-based detector and validate its effectiveness
as compared to the deep learning methods. Furthermore, a
goal of this project is a real-time mobile implementation of
the translation system. Although this increases the difficulty
of the problem compared to the use of better hardware (such
as a Kinect system of camera and time-of-flight sensor), the
tradeoff will greatly improve the practical usability of the
system.

Fig. 1. ASL Fingerspelling alphabet as used in this project. Note that ’j’
and ’z’ are excluded from our considerations here, since they are not static
symbols.

II. THEORY

This whole section presents the research and theoretical
development that represents the bulk of the work that was
done for this project. First we present a basic overview of the
structure of our algorithm, before going into further detail on
specific aspects of our research.

A. Algorithm Overview

Here we briefly present the structure of our proposed system
as seen in figure 2. The two main tasks of feature extraction
and classification are each discussed in detail in the following
two parts of the paper.

The structure of the pipeline that is used in the final
implementation is described in detail in section III, including
the specific methods chosen to solve these two main tasks.

B. Feature Extraction

This part describes various feature extraction methods that
were researched as part of this project. In each case we



Fig. 2. Basic structure of our translation system.

provide a brief introduction into the principle of the method,
before going into detail on how the actual feature extraction
works.

1) HOCD: The Histogram of Centroid Distances (HOCD)
is a very natural feature extractor which captures the infor-
mation of the shape of the hand and converts it to a feature
representation which is as long as the number of bins used
in the histogram. This method works on the binary mask of
the segmented hand in the image. The input to this feature
extractor is thus, a bounding box surrounding the connected
component corresponding to the hand, with ideally, no holes
inside it. The algorithm then works as follows-

• Compute the centroid of hand’s binary mask
• Extract an edge map of the hand by subtracting an eroded

copy of the binary mask from it’s dilated one.
• Calculate distances of each edge pixel in this edge map

from the centroid and then normalize them by the median
distance.

• Compute a histogram of these distances with n bins.

This histogram is then the equivalent representation of the the
hand in the feature space where n, denotes the dimensionality
of the feature vector. Figure 3a shows the binary mask (along
with centroid marked by cross symbol) computed using mor-
phological image processing operations on an image (denoting
the letter ’y’) from the dataset [3] used in this project. Figure
3b shows the histogram computed by the HOCD algorithm on
this input image. Figures 3c and 3d show the binary mask and
HOCD histogram for the same letter on one of our own hand
images, that were used to test our algorithm. The closeness of
these two histograms, one corresponding to training image and
other corresponding to the real test image show that HOCD
features indeed capture good shape information. But, for some
fingerspelling gestures like ’m’ and ’n’ which have almost
similar shape, HOCD would give a similar feature vector and
hence, we would have a bad classification using only these
features. This motivated us to lookout for other options for
feature extraction.

2) Gabor Filters: One feature extraction method that has
been applied in previous work is the use of the Gabor filter.
This filter is similar in function to the common gradient
operators, but with expanded flexibility in terms of scale and
orientation of the kernel. The feature extraction system that we
propose here is taken from [1]. The feature extraction principle
here is to process the image with a set of filters and then
sample the filter responses to create image features.

Gabor filters are linear filters defined by the convolution

(a) (b)
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Fig. 3. (a) Binary mask for dataset image of letter ’y’;(b) Histogram computed
by HOCD algorithm on the binary mask of dataset image; (a) Binary mask
for test image of letter ’y’;(b) Histogram computed by HOCD algorithm on
the binary mask of test image

kernel

g(x, y, λ, σ, θ) = exp

(
x′2 + y′2

2σ2

)
· exp(i )

x′ = x cos(θ) + y sin(θ) , y′ = −x sin(θ) + y cos(θ)

(1)

This filter responds to intensity gradients with respect to the
orientation specified by θ and the scale specified by λ. In order
to detect gradients of many different scales and orientations,
we employ a bank of 16 filters that are all applied to the
image, resulting in 16 complex filter response images. The
scale and orientation of these filters are drawn from a vector
of four scales and a vector of four orientations in all possible
combinations. Before filtering we first resize and zero-pad the
image to fit a 128 pixel square frame in order to regularize
the feature extraction process. Gabor-filtering the image in this
way leads to a suitable basis for detecting the different letter
signs.

Since individual pixel values are unsuitable as actual fea-
tures, one more step is needed for this feature extraction
method. Using an 8-by-8 grid of 64 two-dimensional Gaussian
functions, we extract 64 local averages of the complex magni-
tude of each of the 16 Gabor filter responses. Each Gaussian
is defined by

Gij(x, y) =
1√
2πτ2

exp

(
− (x− µxi)

2 + (y − µyj)
2

2τ2

)
µxi = (16i− 8) , µyj = (16j − 8)

(2)
The resulting grid of 64 functions is shown in figure 4. We
choose the variance τ2 of the Gaussians such that the overlap
between the channels is quite low. The local averages are
computed by weighting the whole image by the ij-th Gaussian
function and then summing up all weighted pixel values.
This results in 1024 features per image which are effective
at determining image similarities.

However, it should be noted that this feature extraction
system is not invariant to rotation, scaling and translational



changes. Scaling and translation can be compensated easily
enough as soon as the hand has been correctly segmented.
However, rotation differences are difficult to detect on the
segmented hand and compensate and so it remains a problem.

Fig. 4. To the left is a test image used to evaluate the Gabor filter. To the
right is a showcase of the grid of 64 Gaussian averaging channels that is used
to extract features from the images.

Fig. 5. Responses of four of the 16 use Gabor filters to the test image. There
are four different scales and four different orientations used across the filter
bank.

3) SURF and Bag of Words: Key-points on the static
hand gesture images can be extracted via either the SIFT [4]
or SURF [5] methods as a scale-invariant method of points
which can be repeatedly extracted on images corresponding to
the same letter symbol. Local descriptors for each key-point
are also created such that a keypoint detected in another
hand image of the same letter will have a similar descriptor.
These descriptors are vectors of length 128 for SIFT and
length 64 for SURF. In the bag of visual words method

[6], descriptors of SIFT/SURF keypoints, extracted from
each image and are concatenated together to form a matrix
containing vectors of either 64 or 128 elements (one vector
for every keypoint in each of the images). To understand
the ”words” that are contained in the visual dictionary that
makes up these hand images, we apply a k-means clustering
algorithm with k = 200 cluster centroids. From this we get k
vectors of length 64 or 128, which we treat as the ”words”
in our visual vocabulary. We now assign every descriptor
vector in each of the images to the nearest cluster centroid
(or ”word”). For each image, this gives us a histogram with
k bins and bin values equal to the number of descriptors
which are closest to that centroid (i.e. the number of times
that ”word” appears in the image). The histogram for each
image can then be used as the feature vector for that image
(i.e. training example). However, when this method (tried for
SURF) was used for feature extraction on training and test
images independently, completely different key-points were
detected in the two images. It was reasoned out that these
features are not suitable for actual implementation, because
they fail to capture enough information from the images
because of illumination differences playing a major role in
different key-points extracted on train and test images. This
difference is illustrated in Figure 6

(a) (b)

Fig. 6. Difference between SURF key-points extracted on dataset image
and real test image (corresponding to letter ’a’) due to different illumination
conditions

4) Hand Model: A method that has been extensively re-
searched is a posture detection method based on a mathemat-
ical 20-degree-of-freedom (DoF) model of the hand skeleton.
This method is inspired by [], but no direct references for
this approach have been found. Instead, all work has been
built from the ground up. The principle of feature extraction
is as follows: For each image, we segment out the hand to
get its silhouette. Then we use an optimization algorithm to
find a parameter set for the hand model that aligns its 2D-
projected silhouette with that of the detected hand. Finally,
these optimized parameters are used as the image features and
can be used to classify images.

The model defines the hand with 24 points, whose relative
position is parametrized by the angles of the finger joints.
In the simplified model used here, each finger has one ball
joint (two rotation axes) and two hinge joints (one rotation
axis each) - so the total amount of parameters comes to 20.
Again, this 20-DoF model does make some simplifications, so



we may consider employing more complex models if errors
occur. The lengths of the individual parts of the skeleton were
estimated to produce a good visual similarity to the shape of
real hands. One configuration of this model can be seen in
figure

The projection of the 3D hand model onto a 2D image
surface was accomplished with perspective projection. This
adds further parameters for scale as well as x- and y-position
in the 2D frame. Before the projection is applied the 3D model
can also be rotated around all three axes, resulting in a total
of 26 parameters for the 2D-projected 20-DoF hand model.

The key to the actual feature extraction process now lies in
manipulating this established model to align with a detected
hand silhouette. The parameters of the optimal fit represent the
estimate of the hand’s posture and are theoretically well suited
to distinguish all of the hand symbol postures. The approach
explored here involves defining an analytical quality function
to the position of each point of the hand model in the 2d
projection. This quality function has so far been defined as
the sum of a set of bumps centered on all hand pixels. The
optimization of this quality function can now in theory be
implemented with the gradient ascent method.

This did however prove difficult within the given time
constraints. Also, the pixelwise definition of the quality
function - while theoretically feasible - resulted in very
inefficient computations for both the value of the error
function and its gradient. As such, it would seem that the
complexity of the optimization problem required by this
feature extraction method is its biggest drawback.
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Fig. 7. To the left is a test of the 3D hand model with the circles indicating
the joints. To the right is a projection of that hand into a 128 pixel square
image.

5) Skin Segmentation: Although it is not a feature in and
of itself, skin segmentation can be used to separate the hand
from the background prior to implementing any of the feature
extraction methods mentioned above. Several color models
have been analyzed for the purpose of skin pixel classification.
In order to detect the hand and create a binary segmentation
mask for each image, we chose to implement a likelihood
model of the rg chromaticity values of skin pixels. A maximum
a priori model could also be used if segmented hand maps were
available for each image used in creating the model. For the

likelihood model, we identified 50 samples of skin sections
from the training images set (making sure to include shadows
on the palm and highlights on the fingers). The normalized
RGB values were calculated as follows:

r =
R

R+G+B
; g =

G

R+G+B
; b =

B

R+G+B

Since r+ g+ b = 1, we can discard the b value and represent
normalized RGB values in the rg chromaticity space, thereby
removing the pixel intensity information. In this space, a pixel
with the same ratio of R:G:B will be identical to another pixel
with a scaled ratio of R:G:B. The r and g values are thus
calculated for each pixel in each skin sample. A 2-dimensional
histogram is then created for the r and g values as seen in
Figure 8.

Fig. 8. Histogram of skin pixels in rg chromaticity space

To then detect the hand in each image, we calculated the r
and g values for each pixel in the and look up the correspond-
ing likelihood value from the histogram in order to create a
likelihood map of the image (higher values indicating skin).
We threshold the likelihood map to create a binary image, and
use various morphological image processing techniques to fill
in holes and reduce other noise created by pixels that appear
to be skin but are not (Figure 9). This procedure does not
create a perfect mask and tends to miss areas of the hand with
particularly harsh illumination or deep shadow. It should be
noted that this method is very inaccurate at segmenting out the
hand when other skin such as the face or neck is also present
in the image. However, the imperfect nature of this resulting
segmentation mask reduced the ability of our classification
methods to effectively separate and classify different ASL
letters. Therefore, we chose to implement our algorithm on
training and testing images that consisted of a hand in front
of a black background, thereby forgoing the need to use skin
segmentation.

C. Classification

For classification we have considered the simple yet
powerful, non-parametric K-nearest neighbors (KNN)
algorithm which is built into MATLAB. In the training phase,
this algorithm just stores the feature vectors (for each or a
combination of the above feature extraction techniques) along



Fig. 9. Original image (left), likelihood map (middle), and binary mask of
hand (right)

with corresponding class labels for each training example
(data-set hand image) that is shown to it. In the classification
(prediction) phase, it assigns that class label which is most
common among the K nearest neighbors of the test image’s
feature vector. Other methods such as Multiclass SVM and
Discriminant Analysis were also considered. Although they
gave comparable or sometimes even better accuracy on
training set as compared to KNN, they offered much lower
test errors as compared to KNN.

III. IMPLEMENTATION

A. Training phase

1) Data-sets: In the training phase, we considered two dif-
ferent data-sets, particularly, [2] and [3]. The former has hand
images of very low resolution and are captured in cluttered
backgrounds, while the later has good resolution segmented
hand images. Although the first dataset would generalize well,
for training our model, we considered the second dataset
to ensure, a much accurate prediction of the live images
captured using the Android smart-phone. This is because,
while performing the live demo we made an assumption that
we capture images against a black background to avoid hand
segmentation problems and focus on the more important task
of classifying the hand gesture correctly with a good choice of
features. In a separate experiment, we did attempt to relax this
assumption by trying to extract a hand mask from the cluttered
background by using skin color histogram segmentation, more
on which is elaborated later in the report.

2) Building the model: The data-set [3] contains approx-
imately 70 images per letter from 5 different users. The
feature vector for each image in this data-set is constructed
by concatenating the feature vectors from the HOCD method
and Gabor Filter methods that were described in the above
section. Among other options such as only HOCD and only
Gabor, this combination was particularly chosen as it gave
the best classification performance on the real-test images that
were taken with the Android phone. SURF features using the
bag of words model weren’t considered because even though
they offered a not so poor generalization error on the training
set itself, the repeatability of key-point detection in test images
was very poor because of illumination variance of SURF. Also,
before the actual test images were passed to the individual

feature extractors, they were morphologically pre-processed
as follows-
• Gray-level thresholding using Otsu’s method to get a

binary mask of the actual image
• Dilation and hole filling of this binary image to obtain a

smoother and more well segmented hand mask.
• Small region removal to segment out erroneously detected

foreground elements (due to illumination conditions) and
ensure that the hand is the only connected component in
the entire binary image.

• Crop the image based on a bounding box around the hand
area.

• Give the cropped binary mask as input to HOCD and
original image cropped using the computed bounding box
as input to the Gabor Filter feature extractor

These steps ensure, that the features computed are in-
dependent of re-scaling and bad lighting conditions (which
will be more important when testing, but to ensure same
method for feature extraction, applied to training as well).
The combination of these two features and corresponding class
labels is then passed to a KNN classifier to train a classification
model which is later used directly to predict every single test
image captured using the Android phone.

B. Prediction Pipeline

The main step in the implementation was to be able to
classify the user’s ASL images using the pre-trained KNN
classification model. We accomplished this by using the steps
shown in Figure 10.

Fig. 10. Steps in prediction pipeline with Android platform in blue and server
in purple

(a) (b)

Fig. 11. The a) first and b) last steps of the prediction pipeline

1) Android Client-Server Communication: In Figure 11,
the first and last steps in blue were performed on a mobile
Android application, while the intermediate steps in purple
were performed by MATLAB code that was running on a
remote server. We chose to run our MATLAB code on Stanford
University’s FarmShare corn server, given that it had an easily
accessible MATLAB module. Using the framework suggested



TABLE I
ERRORS MEASURED ON TRAINING SET AND TEST IMAGES

Feature Extractors Generalization error on training set
(using 5 fold cross validation)

Test-error on images
captured using Android phone

HOCD 0.1940 0.6
Gabor Filter 0.009 0.5
HOCD + Gabor Filter 0.0107 0.2
SURF with Bag of Words 0.1403 -

in [7], we set up an Android application as the client which
takes a photo and sends it to the server (specifically, to the
URL of a PHP script on the server). We would then like the
PHP file to save this input image, generate a file indicating
that the input image is ready for processing, and invoke the
overarching MATLAB code loop (predictASLLoop.m) that
will begin the process of interpreting the image. However,
the corn server does not allow MATLAB to be launched
from our PHP file, which means we have to make sure that
predictASLLoop.m is running on the server while we are
trying to process an input image. While it is running, the
overarching loop (predictASLLoop.m) continuously checks
for the PHP-generated file indicating that an input image is
ready for processing. If an input indicator file is present,
predictASLLoop.m will read the input image, remove the
input indicator file, pass the input image for processing by
predictASL.m, save the image result from predictASL.m, and
generate a file to indicate that the image result is ready to be
sent to the Android app. The PHP file will be continuously
checking for this result indicator file. When the result indicator
is detected, the PHP file will automatically push the image
result back to the Android app.

2) MATLAB Prediction Steps: The predictASL.m file im-
plements the purple prediction steps seen in Figure 10. First,
it thresholds and segments the image using Otsu’s method,
while filling in holes and performing small region removal.
The image and the binary mask of the image are both cropped
by the bounding box of the largest region in the mask
(the hand). The Gabor features are then extracted using the
cropped image, and the HOCD features are extracted using
the cropped binary mask. Both of these feature sets are fed
into the predict function of the pre-trained KNN classifier. The
resulting prediction is used to select a stock image of the letter
that was predicted. This predicted letter image is then returned
to predictASLLoop.m.

IV. RESULTS

As discussed before, the training of the classification model
was performed with four different combinations of feature
extraction methods and generalization error using 5-fold cross
validation on the training set and test-errors on the real-
images captured using Android phone were computed three
of these combinations (test errors weren’t computed for SURF
with Bag of Words because, even though generalization error
was not too bad on training set, the key-points computed
had a very high dependence on illumination condition and
this method wasn’t suited for real time implementation as
discussed before). The results are given in Table I.

Fig. 12. Confusion Matrix for generalization on training set using HOCD
and Gabor Filters in combination as feature extractors

As it can be seen from the table above, Gabor filter clearly
over fits the training dataset but performs much worse than
the combination of HOCD and Gabor on the test set. HOCD
is inherently more robust to rotation and scale changes, but
it’s generalization error is not as good. The combination of
both HOCD and Gabor gives the lowest test error of 0.2. To
give a sense of the generalization error using the combination
features, a confusion matrix for the 24 class labels is shown
in Figure 12.

V. CONCLUSION

To evaluate the work on this project, we look to the insight
gained from the research performed and to the test results
offered by our completed prototype system.

As we saw in section II, the effort to find useful features
proved quite difficult for this problem, which meant that a
range of different approaches needed to be explored. In the
end it is clear that for the constraints of this project in terms
of time and hardware used, the combination of HOCD and
Gabor filter feature extraction proved to be most effective and
reliable. The SURF-based method and the hand-model based
approach were both discarded for now along with the ML skin
segmentation method. The difficulties encountered mean that
further exploring new solutions and methods may be a fruitful
way of improving on the current system.

As seen in sections III and IV, this current system has
proved to be effective in early tests. However, the test scenario
is still somewhat limited, so the results must be taken in that
context. It is also to be noted that there are some symbols -
the more difficult ones - that are quite often misclassified.

All in all, the project shows that this difficult problem can
require much effort to solve optimally. However, the progress
made is encouraging and demonstrates that the feature-based
approach can be made to work even in a mobile application.



Also, with the right training sets, this method could be applied
to interpret any set of static hand gesture symbols.

Next steps to improve the current system would focus
on further work within hand model feature extraction and
and skin segmentation. The former - finding an effective
implementation of the model-based detection - promises to
add some distinctive features to the classification process that
could help make better decisions, especially with the most
difficult symbols. The latter - an effective skin segmentation
system - would allow the system to be used on images with
cluttered backgrounds of almost any color, which would be
a significant improvement. Connected to this effort we would
also suggest developing a system that can distinguish between
different types of skin regions in order to avoid interpreting
non-hand regions by accident.
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