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ABSTRACT
Over half a century old and showing no signs of aging,
k-means remains one of the most popular data process-
ing algorithms. As is well-known, a proper initialization
of k-means is crucial for obtaining a good final solution.
The recently proposed k-means++ initialization algorithm
achieves this, obtaining an initial set of centers that is prov-
ably close to the optimum solution. A major downside of the
k-means++ is its inherent sequential nature, which limits its
applicability to massive data: one must make k passes over
the data to find a good initial set of centers. In this work we
show how to drastically reduce the number of passes needed
to obtain, in parallel, a good initialization. This is unlike
prevailing efforts on parallelizing k-means that have mostly
focused on the post-initialization phases of k-means. We
prove that our proposed initialization algorithm k-means||
obtains a nearly optimal solution after a logarithmic num-
ber of passes, and then show that in practice a constant
number of passes suffices. Experimental evaluation on real-
world large-scale data demonstrates that k-means|| outper-
forms k-means++ in both sequential and parallel settings.

1. INTRODUCTION
Clustering is a central problem in data management and

has a rich and illustrious history with literally hundreds of
different algorithms published on the subject. Even so, a
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single method — k-means — remains the most popular clus-
tering method; in fact, it was identified as one of the top 10
algorithms in data mining [34]. The advantage of k-means
is its simplicity: starting with a set of randomly chosen ini-
tial centers, one repeatedly assigns each input point to its
nearest center, and then recomputes the centers given the
point assignment. This local search, called Lloyd’s itera-
tion, continues until the solution does not change between
two consecutive rounds.

The k-means algorithm has maintained its popularity even
as datasets have grown in size. Scaling k-means to massive
data is relatively easy due to its simple iterative nature.
Given a set of cluster centers, each point can independently
decide which center is closest to it and, given an assignment
of points to clusters, computing the optimum center can be
done by simply averaging the points. Indeed parallel imple-
mentations of k-means are readily available (see, for exam-
ple, cwiki.apache.org/MAHOUT/k-means-clustering.html).

From a theoretical standpoint, k-means is not a good clus-
tering algorithm in terms of efficiency or quality: the run-
ning time can be exponential in the worst case [32, 4] and
even though the final solution is locally optimal, it can be
very far away from the global optimum (even under repeated
random initializations). Nevertheless, in practice the speed
and simplicity of k-means cannot be beat. Therefore, recent
work has focused on improving the initialization procedure:
deciding on a better way to initialize the clustering dramati-
cally changes the performance of the Lloyd’s iteration, both
in terms of quality and convergence properties.

A important step in this direction was taken by Ostro-
vsky et al. [30] and Arthur and Vassilvitskii [5], who showed
a simple procedure that both leads to good theoretical guar-
antees for the quality of the solution, and, by virtue of a good
starting point, improves upon the running time of Lloyd’s
iteration in practice. Dubbed k-means++, the algorithm se-
lects only the first center uniformly at random from the data.
Each subsequent center is selected with a probability pro-
portional to its contribution to the overall error given the
previous selections (we make this statement precise in Sec-
tion 3). Intuitively, the initialization algorithm exploits the
fact that a good clustering is relatively spread out, thus
when selecting a new cluster center, preference should be
given to those further away from the previously selected cen-
ters. Formally, one can show that k-means++ initialization



leads to an O(log k) approximation of the optimum [5], or
a constant approximation if the data is known to be well-
clusterable [30]. The experimental evaluation of k-means++
initialization and the variants that followed [1, 2, 15] demon-
strated that correctly initializing Lloyd’s iteration is crucial
if one were to obtain a good solution not only in theory, but
also in practice. On a variety of datasets k-means++ initial-
ization obtained order of magnitude improvements over the
random initialization.

The downside of the k-means++ initialization is its inher-
ently sequential nature. Although its total running time of
O(nkd), when looking for a k-clustering of n points in Rd,
is the same as that of a single Lloyd’s iteration, it is not ap-
parently parallelizable. The probability with which a point
is chosen to be the ith center depends critically on the real-
ization of the previous i−1 centers (it is the previous choices
that determine which points are away in the current solu-
tion). A naive implementation of k-means++ initialization
will make k passes over the data in order to produce the
initial centers.

This fact is exacerbated in the massive data scenario.
First, as datasets grow, so does the number of classes into
which one wishes to partition the data. For example, clus-
tering millions of points into k = 100 or k = 1000 is typical,
but a k-means++ initialization would be very slow in these
cases. This slowdown is even more detrimental when the
rest of the algorithm (i.e., Lloyd’s iterations) can be imple-
mented in a parallel environment like MapReduce [13]. For
many applications it is desirable to have an initialization al-
gorithm with similar guarantees to k-means++ and that can
be efficiently parallelized.

1.1 Our contributions
In this work we obtain a parallel version of the k-means++

initialization algorithm and empirically demonstrate its prac-
tical effectiveness. The main idea is that instead of sampling
a single point in each pass of the k-means++ algorithm, we
sample O(k) points in each round and repeat the process for
approximately O(logn) rounds. At the end of the algorithm
we are left with O(k logn) points that form a solution that is
within a constant factor away from the optimum. We then
recluster these O(k logn) points into k initial centers for the
Lloyd’s iteration. This initialization algorithm, which we
call k-means||, is quite simple and lends itself to easy paral-
lel implementations. However, the analysis of the algorithm
turns out to be highly non-trivial, requiring new insights,
and is quite different from the analysis of k-means++.

We then evaluate the performance of this algorithm on
real-world datasets. Our key observations in the experi-
ments are:

• O(logn) iterations is not necessary and after as little as
five rounds, the solution of k-means|| is consistently as
good or better than that found by any other method.

• The parallel implementation of k-means|| is much faster
than existing parallel algorithms for k-means.

• The number of iterations until Lloyd’s algorithm con-
verges is smallest when using k-means|| as the seed.

2. RELATED WORK
Clustering problems have been frequent and important

objects of study for the past many years by data manage-
ment and data mining researchers.1 A thorough review of
the clustering literature, even restricted to the work in the
database area, is far beyond the scope of this paper; the
readers are referred to the plethora of surveys available [8,
10, 25, 21, 19]. Below, we only discuss the highlights directly
relevant to our work.

Recall that we are concerned with k-partition clustering:
given a set of n points in Euclidean space and an integer
k, find a partition of these points into k subsets, each with
a representative, also known as a center. There are three
common formulations of k-partition clustering depending on
the particular objective used: k-center, where the objective
is to minimize the maximum distance between a point and
its nearest cluster center, k-median, where the objective is
to minimize the sum of these distances, and k-means, where
the objective is to minimize the sum of squares of these
distances. All three of these problems are NP-hard, but a
constant factor approximation is known for them.

The k-means algorithms have been extensively studied
from database and data management points of view; we dis-
cuss some of them. Ordonez and Omiecinski [29] studied
efficient disk-based implementation of k-means, taking into
account the requirements of a relational DBMS. Ordonez
[28] studied SQL implementations of the k-means to better
integrate it with a relational DBMS. The scalability issues
in k-means are addressed by Farnstrom et al. [16], who
used compression-based techniques of Bradley et al. [9] to
obtain a single-pass algorithm. Their emphasis is to initial-
ize k-means in the usual manner, but instead improve the
performance of the Lloyd’s iteration.

The k-means algorithm has also been considered in a par-
allel and other settings; the literature is extensive on this
topic. Dhillon and Modha [14] considered k-means in the
message-passing model, focusing on the speed up and scal-
ability issues in this model. Several papers have studied
k-means with outliers; see, for example, [22] and the refer-
ences in [18]. Das et al. [12] showed how to implement EM
(a generalization of k-means) in MapReduce; see also [36]
who used similar tricks to speed up k-means. Sculley [31]
presented modifications to k-means for batch optimizations
and to take data sparsity into account. None of these papers
focuses on doing a non-trivial initialization. More recently,
Ene et al. [15] considered the k-median problem in MapRe-
duce and gave a constant-round algorithm that achieves a
constant approximation.

The k-means algorithms have also been studied from the-
oretical and algorithmic points of view. Kanungo et al. [23]
proposed a local search algorithm for k-means with a run-
ning time of O(n3ε−d) and an approximation factor of 9+ ε.
Although the running time is only cubic in the worst case,
even in practice the algorithm exhibits slow convergence to
the optimal solution. Kumar, Sabharwal, and Sen [26] ob-
tained a (1 + ε)-approximation algorithm with a running
time linear in n and d but exponential in k and 1

ε
. Os-

trovsky et al. [30] presented a simple algorithm for finding
an initial set of clusters for Lloyd’s iteration and showed
that under some data separability assumptions, the algo-

1A paper on database clustering [35] won the 2006 SIGMOD
Test of Time Award.



rithms achieve an O(1)-approximation to the optimum. A
similar method, k-means++, was independently developed
by Arthur and Vassilvitskii [5] who showed that it achieves
an O(log k)-approximation but without any assumptions on
the data.

Since then, the k-means++ algorithm has been extended to
work better on large datasets in the streaming setting. Ailon
et al. [2] introduced a streaming algorithm inspired by the
k-means++ algorithm. Their algorithm makes a single pass
over the data while selecting O(k log k) points and achieves
a constant-factor approximation in expectation. Their al-
gorithm builds on an influential paper of Guha et al. [17]
who gave a streaming algorithm for the k-median problem
that is easily adaptable to the k-means setting. Ackermann
et al. [1] introduced another streaming algorithm based on
k-means++ and show that it performs well while making a
single pass over the input.

We will use MapReduce to demonstrate the effectiveness
of our parallel algorithm, but note that the algorithm can be
implemented in a variety of parallel computational models.
We require only primitive operations that are readily avail-
able in any parallel setting. Since the pioneering work by
Dean and Ghemawat [13], MapReduce and its open source
version, Hadoop [33], has become a de facto standard for
large data analysis, and a variety of algorithms have been
designed for it [7, 6]. To aid in the formal analysis of MapRe-
duce algorithms, Karloff et al. [24] introduced a model of
computation for MapReduce, which has since been used to
reason about algorithms for set cover [11], graph problems
[27], and other clustering formulations [15].

3. THE ALGORITHM
In this section we present our parallel algorithm for ini-

tializing Lloyd’s iteration. First, we set up some notation
that will be used throughout the paper. Next, we present
the background on k-means clustering and the k-means++
initialization algorithm (Section 3.1). Then, we present our
parallel initialization algorithm, which we call k-means|| (Sec-
tion 3.3). We present an intuition why k-means|| initializa-
tion can provide approximation guarantees (Section 3.4); the
formal analysis is deferred to Section 6. Finally, we discuss
a MapReduce realization of our algorithm (Section 3.5).

3.1 Notation and background
LetX = {x1, . . . , xn} be a set of points in the d-dimensional

Euclidean space and let k be a positive integer specifying
the number of clusters. Let ||xi − xj || denote the Euclidean
distance between xi and xj . For a point x and a subset
Y ⊆ X of points, the distance is defined as d(x, Y ) =
miny∈Y ||x − y||. For a subset Y ⊆ X of points, let its
centroid be given by

centroid(Y ) =
1

|Y |
X
y∈Y

y.

Let C = {c1, . . . , ck} be a set of points and let Y ⊆ X.
We define the cost of Y with respect to C as

φY (C) =
X
y∈Y

d2(y, C) =
X
y∈Y

min
i=1,...,k

||y − ci||2.

The goal of k-means clustering is to choose a set C of k cen-
ters to minimize φX(C); when it is obvious from the context,

we simply denote this as φ. Let φ∗ be the cost of the opti-
mal k-means clustering; finding φ∗ is NP-hard [3]. We call
a set C of centers to be an α-approximation to k-means if
φX(C) ≤ αφ∗. Note that the centers automatically define a
clustering of X as follows: the ith cluster is the set of all
points in X that are closer to ci than any other cj , j 6= i.

We now describe the popular method for finding a locally
optimum solution to the k-means problem. It starts with a
random set of k centers. In each iteration, a clustering of X
is derived from the current set of centers. The centroids of
these derived clusters then become the centers for the next
iteration. The iteration is then repeated until a stable set
of centers is obtained. The iterative portion of the above
method is called Lloyd’s iteration.

Arthur and Vassilvitskii [5] modified the initialization step
in a careful manner and obtained a randomized initializa-
tion algorithm called k-means++. The main idea in their
algorithm is to choose the centers one by one in a controlled
fashion, where the current set of chosen centers will stochas-
tically bias the choice of the next center (Algorithm 1). The
advantage of k-means++ is that even the initialization step
itself obtains an (8 log k)-approximation to φ∗ in expectation
(running Lloyd’s iteration on top of this will only improve
the solution, but no guarantees can be made). The cen-
tral drawback of k-means++ initialization from a scalability
point of view is its inherent sequential nature: the choice of
the next center depends on the current set of centers.

Algorithm 1 k-means++(k) initialization.

1: C ← sample a point uniformly at random from X
2: while |C| < k do

3: Sample x ∈ X with probability d2(x,C)
φX (C)

4: C ← C ∪ {x}
5: end while

3.2 Intuition behind our algorithm
We describe the high-level intuition behind our algorithm.

It is easiest to think of random initialization and k-means++
initialization as occurring at two ends of a spectrum. The
former selects k centers in a single iteration according to a
specific distribution, which is the uniform distribution. The
latter has k iterations and selects one point in each iteration
according to a non-uniform distribution (that is constantly
updated after each new center is selected). The provable
gains of k-means++ over random initialization is precisely
in the constantly updated non-uniform selection. Ideally,
we would like to achieve the best of both worlds: an algo-
rithm that works in a small number of iterations, selects
more than one point in each iteration but in a non-uniform
manner, and has provable approximation guarantees. Our
algorithm follows this intuition and finds the sweet spot (or
the best trade-off point) on the spectrum by carefully defin-
ing the number of iterations and the non-uniform distribu-
tion itself. While the above idea seems conceptually simple,
making it work with provable guarantees (as k-means++)
throws up a lot of challenges, some of which are also clearly
reflected in the analysis of our algorithm. We now describe
our algorithm.



3.3 Our initialization algorithm: k-means||
In this section we present k-means||, our parallel version

for initializing the centers. While our algorithm is largely
inspired by k-means++, it uses an oversampling factor ` =
Ω(k), which is unlike k-means++; intuitively, ` should be
thought of as Θ(k). Our algorithm picks an initial center
(say, uniformly at random) and computes ψ, the initial cost
of the clustering after this selection. It then proceeds in logψ
iterations, where in each iteration, given the current set C of
centers, it samples each x with probability `d2(x, C)/φX(C).
The sampled points are then added to C, the quantity φX(C)
updated, and the iteration continued. As we will see later,

Algorithm 2 k-means||(k, `) initialization.

1: C ← sample a point uniformly at random from X
2: ψ ← φX(C)
3: for O(logψ) times do
4: C′ ← sample each point x ∈ X independently with

probability px = `·d2(x,C)
φX (C)

5: C ← C ∪ C′
6: end for
7: For x ∈ C, set wx to be the number of points in X closer

to x than any other point in C
8: Recluster the weighted points in C into k clusters

the expected number of points chosen in each iteration is `
and at the end, the expected number of points in C is ` logψ,
which is typically more than k. To reduce the number of
centers, Step 7 assigns weights to the points in C and Step
8 reclusters these weighted points to obtain k centers. The
details are presented in Algorithm 2.

Notice that the size of C is significantly smaller than the
input size; the reclustering can therefore be done quickly.
For instance, in MapReduce, since the number of centers
is small they can all be assigned to a single machine and
any provable approximation algorithm (such as k-means++)
can be used to cluster the points to obtain k centers. A
MapReduce implementation of Algorithm 2 is discussed in
Section 3.5.

While our algorithm is very simple and lends itself to a
natural parallel implementation (in logψ rounds2), the chal-
lenging part is to show that it has provable guarantees. Note
that ψ ≤ n2∆2, where ∆ is the maximum distance among a
pair of points in X.

We now state our formal guarantee about this algorithm.

Theorem 1. If an α-approximation algorithm is used in
Step 8, then Algorithm k-means|| obtains a solution that is
an O(α)-approximation to k-means.

Thus, if k-means++ initialization is used in Step 8, then
k-means|| is an O(log k)-approximation. In Section 3.4 we
give an intuitive explanation why the algorithm works; we
defer the full proof to Section 6.

3.4 A glimpse of the analysis
In this section, we present the intuition behind the proof

of Theorem 1. Consider a cluster A present in the optimum
k-means solution, denote |A| = T , and sort the points in A
in an increasing order of their distance to centroid(A): let

2In practice, our experimental results in Section 5 show that
only a few rounds are enough to reach a good solution.

the ordering be a1, . . . , aT . Let qt be the probability that
at is the first point in the ordering chosen by k-means|| and
qT+1 be the probability that no point is sampled from cluster
A. Letting pt denote the probability of selecting at, we have,
by definition of the algorithm, pt = `d2(at, C)/φX(C). Also,
since k-means|| picks each point independently, for any 1 ≤
t ≤ T , we have qt = pt

Qt−1
j=1(1−pj), and qT+1 = 1−

PT
t=1 qt.

If at is the first point in A (w.r.t. the ordering) sampled
as a new center, we can either assign all the points in A to
at, or just stick with the current clustering of A. Hence,
letting

st = min

(
φA,

X
a∈A

||a− at||2
)
,

we have

E[φA(C ∪ C′)] ≤
TX
t=1

qtst + qT+1φA(C),

Now, we do a mean-field analysis, in which we assume all
pt’s (1 ≤ t ≤ T ) to be equal to some value p. Geometrically
speaking, this corresponds to the case where all the points
in A are very far from the current clustering (and are also
rather tightly clustered, so that all d(at, C)’s (1 ≤ t ≤ T )
are equal). In this case, we have qt = p(1 − p)t−1, and
hence {qt}1≤t≤T is a monotone decreasing sequence. By the
ordering on at’s, letting

s′t =
X
a∈A

||a− at||2,

we have that {s′t}1≤t≤T is an increasing sequence. Therefore

TX
t=1

qtst ≤
TX
t=1

qts
′
t ≤

1

T

 
TX
t=1

qt ·
TX
t=1

s′t

!
,

where the last inequality, an instance of Chebyshev’s sum in-
equality [20], is using the inverse monotonicity of sequences

{qt}1≤t≤T and {s′t}1≤t≤T . It is easy to see that 1
T

PT
t=1 s

′
t =

2φ∗A. Therefore,

E[φA(C ∪ C′)] ≤ (1− qT+1)2φ∗A + qT+1φA(C).

This shows that in each iteration of k-means||, for each
optimal cluster A, we remove a fraction of φA and replace
it with a constant factor times φ∗A. Thus, Steps 1–6 of
k-means|| obtain a constant factor approximation to k-means
after O(logψ) rounds and return O(` logψ) centers. The al-
gorithm obtains a solution of size k by clustering the chosen
centers using a known algorithm. Section 6 contains the for-
mal arguments that work for the general case when pt’s are
not necessarily the same.

3.5 A parallel implementation
In this section we discuss a parallel implementation of

k-means|| in the MapReduce model of computation. We
assume familiarity with the MapReduce model and refer the
reader to [13] for further details. As we mentioned earlier,
Lloyd’s iterations can be easily parallelized in MapReduce
and hence, we only focus on Steps 1–7 in Algorithm 2. Step
4 is very simple in MapReduce: each mapper can sample
independently and Step 7 is equally simple given a set C of
centers. Given a (small) set C of centers, computing φX(C)
is also easy: each mapper working on an input partition
X ′ ⊆ X can compute φX′(C) and the reducer can simply



add these values from all mappers to obtain φX(C). This
takes care of Step 2 and the update to φX(C) needed for the
iteration in Steps 3–6.

Note that we have tacitly assumed that the set C of cen-
ters is small enough to be held in memory or be distributed
among all the mappers. While this suffices for nearly all
practical settings, it is possible to implement the above steps
in MapReduce even without this assumption. Each map-
per holding X ′ ⊆ X and C′ ⊆ C can output the tuple
〈x; arg minc∈C′ d(x, c)〉, where x ∈ X ′ is the key. From this,
the reducer can easily compute d(x, C) and hence φX(C). Re-
ducing the amount of intermediate output by the mappers
in this case is an interesting research direction.

4. EXPERIMENTAL SETUP
In this section we present the experimental setup for eval-

uating k-means||. The sequential version of algorithms were
evaluated on a single workstation with quad-core 2.5GHz
processors and 16Gb of memory. The parallel algorithms
were run using a Hadoop cluster of 1968 nodes, each with
two quad-core 2.5GHz processors and 16GB of memory.

We describe the datasets and baseline algorithms that will
be used for comparison.

4.1 Datasets
We use three datasets to evaluate the performance of

k-means||. The first dataset, GaussMixture, is synthetic;
a similar version was used in [5]. To generate the dataset,
we sampled k centers from a 15-dimensional spherical Gaus-
sian distribution with mean at the origin and variance R ∈
{1, 10, 100}. We then added points from Gaussian distribu-
tions of unit variance around each center. Given the k cen-
ters, this is a mixture of k spherical Gaussians with equal
weights. Note that the Gaussians are separated in terms
of probability mass — even if only marginally for the case
R = 1 — and therefore the value of the optimal k-clustering
can be well approximated using the centers of these Gaus-
sians. The number of sampled points from this mixture of
Gaussians is n = 10, 000.

The other two datasets considered are from real-world set-
tings and are publicly available from the UC Irvine Machine
Learning repository (archive.ics.uci.edu/ml/datasets.
html). The Spam dataset consists of 4601 points in 58 di-
mensions and represents features available to an e-mail spam
detection system. The KDDCup1999 dataset consists of
4.8M points in 42 dimensions and was used for the 1999
KDD Cup. We also used a 10% sample of this dataset to
illustrate the effect of different parameter settings.

For GaussMixture and Spam, given the moderate num-
ber of points in those datasets, we use k ∈ {20, 50, 100}.
For KDDCup1999, we experiment with finer clusterings,
i.e., we use k ∈ {500, 1000}. The datasets GaussMixture
and Spam are studied with the sequential implementation of
k-means||, whereas we use the parallel implementation (in
the Hadoop framework) for KDDCup1999.

4.2 Baselines
For the rest of the paper, we assume that each initializa-

tion method is implicitly followed by Lloyd’s iterations. We
compare the performance of k-means|| initialization against
the following baselines:

• k-means++ initialization, as in Algorithm 1;

• Random, which selects k points uniformly at random
from the dataset; and

• Partition, which is a recent streaming algorithm for
k-means clustering [2], described in Section 4.2.1.

Of these, k-means++ can be viewed as the true baseline,
since k-means|| is a natural parallelization of it. However,
k-means++ can be only run on datasets of moderate size
and only for modest values of k. For large-scale datasets,
it becomes infeasible and parallelization becomes necessary.
Since Random is commonly used and is easily parallelized, we
chose it as one of our baselines. Finally, Partition is a re-
cent one-pass streaming algorithm with performance guar-
antees, and is also parallelizable; hence, we included it as
well in our baseline and describe it in Section 4.2.1. We now
describe the parameter settings for these algorithms.

For Random, the parallel MapReduce/Hadoop implemen-
tation is standard3. In the sequential setting we ran Random

until convergence, while in the parallel version, we bounded
the number of iterations to 20. In general, we observed
that the improvement in the cost of the clustering becomes
marginal after only a few iterations. Furthermore, taking
the best of Random repeated multiple times with different
random initial points also obtained only marginal improve-
ments in the clustering cost.

We use k-means++ for reclustering in Step 8 of k-means||.
We tested k-means|| with ` ∈ {0.1k, 0.5k, k, 2k, 10k}, with
r = 15 rounds for the case ` = 0.1k, and r = 5 rounds
otherwise (running k-means|| for five rounds when ` = 0.1k
leads it to select fewer than k centers with high probabil-
ity). Since the expected number of intermediate points con-
sidered by k-means|| is r`, these settings of the parameters
yield a very small intermediate set (of size between 1.5k and
40k). Nonetheless, the quality of the solutions returned by
k-means|| is comparable and often better than Partition,
which makes use of a much larger set and hence is much
slower.

4.2.1 Setting parameters for Partition

The Partition algorithm [2] takes as input a parameterm
and works as follows: it divides the input into m equal-sized
groups. In each group, it runs a variant of k-means++ that
selects 3 log k points in each iteration (traditional k-means++
selects only a single point). At the end of this, similar to
our reclustering step, it runs (vanilla) k-means++ on the
weighted set of these 3m log k clusters to reduce the number
of centers to k.

Choosing m =
p
n/k minimizes the amount of mem-

ory used by the streaming algorithm. A neat feature of
Partition is that it can be implemented in parallel: in the
first round, groups are assigned to m different machines that
can be run in parallel to obtain the intermediate set and in
the second round, k-means++ is run on this set sequentially.
In the parallel implementation, the setting m =

p
n/k not

only optimizes the memory used by each machine but also
optimizes the total running time of the algorithm (ignor-
ing setup costs), as the size of the instance per machine in
the two rounds is equated. (The instance size per machine

is O(n/m) = Õ(
√
nk) which yields a running time in each

3E.g., cwiki.apache.org/MAHOUT/k-means-clustering.
html.



R = 1 R = 10 R = 100
seed final seed final seed final

Random — 14 — 201 — 23,337
k-means++ 23 14 62 31 30 15
k-means||

` = k/2, r = 5
21 14 36 28 23 15

k-means||
` = 2k, r = 5

17 14 27 25 16 15

Table 1: The median cost (over 11 runs) on Gauss-
Mixture with k = 50, scaled down by 104. We show
both the cost after the initialization step (seed) and
the final cost after Lloyd’s iterations (final).

round of Õ(k3/2√n).) Note that this implies that the run-
ning time of Partition does not improve when the number
of available machines surpasses a certain threshold. On the
other hand, k-means||’s running time improves linearly with
the number of available machines (as discussed in Section
2, such issues were considered in [14]). Finally, notice that
using this optimal setting, the expected size of the interme-
diate set used by Partition is 3

√
nk log k, which is much

larger than that obtained by k-means||. For instance, Ta-
ble 5 shows that the size of the coreset returned by k-means||
is smaller by three orders of magnitude.

5. EXPERIMENTAL RESULTS
In this section we describe the experimental results based

on the setup in Section 4. We present experiments on both
sequential and parallel implementations of k-means||. Recall
that the main merits of k-means|| were stated in Theorem 1:
(i) k-means|| obtains as a solution whose clustering cost is on
par with k-means++ and hence is expected to be much bet-
ter than Random and (ii) k-means|| runs in a fewer number of
rounds when compared to k-means++, which translates into
a faster running time especially in the parallel implementa-
tion. The goal of our experiments will be to demonstrate
these improvements on massive, real-world datasets.

5.1 Clustering cost
To evaluate the clustering cost of k-means||, we compare it

against the baseline approaches. Spam and GaussMixture
are small enough to be evaluated on a single machine, and we
compare their cost to that of k-means|| for moderate values
of k ∈ {20, 50, 100}. We note that for k ≥ 50, the centers
selected by Partition before reclustering represent the full
dataset (as 3

√
nk log k > n for these datasets), which means

that results of Partition would be identical to those of
k-means++. Hence, in this case, we only compare k-means||
with k-means++ and Random. KDDCup1999 is sufficiently
large that for large values of k ∈ {500, 1000}, k-means++ is
extremely slow when run on a single machine. Hence, in
this case, we will only compare the parallel implementation
of k-means|| with Partition and Random.

We present the results for GaussMixture in Table 1 and
for Spam in Table 2. For each algorithm we list the cost of
the solution both at the end of the initialization step, before
any Lloyd’s iteration and the final cost. We present two pa-
rameter settings for k-means||; we will explore the effect of
the parameters on the performance of the algorithm in Sec-
tion 5.3. We note that the initialization cost of k-means|| is
typically lower than that of k-means++. This suggests that

k = 20 k = 50 k = 100
seed final seed final seed final

Random — 1,528 — 1,488 — 1,384
k-means++ 460 233 110 68 40 24
k-means||

` = k/2, r = 5
310 241 82 65 29 23

k-means||
` = 2k, r = 5

260 234 69 66 24 24

Table 2: The median cost (over 11 runs) on Spam
scaled down by 105. We show both the cost after
the initialization step (seed) and the final cost after
Lloyd’s iterations (final).

k = 500 k = 1000
Random 6.8× 107 6.4× 107

Partition 7.3 1.9
0.1k 5.1 1.5
0.5k 19 5.2

k-means||, ` = k 7.7 2.0
2k 5.2 1.5
10k 5.8 1.6

Table 3: Clustering cost (scaled down by 1010) for
KDDCup1999 for r = 5.

the centers produced by k-means|| avoid outliers, i.e., points
that “confuse” k-means++. This improvement persists, al-
though is not as pronounced if we look at the final cost of
the clustering. In Table 3 we present the results for KD-
DCup1999. It is clear that both k-means|| and Partition

outperform Random by orders of magnitude. The overall cost
for k-means|| improves with larger values of ` and surpasses
that of Partition for ` > k.

5.2 Running time
We now show that k-means|| is faster than Random and

Partition when implemented to run in parallel. Recall that
the running time of k-means|| consists of two components:
the time required to generate the initial solution and the
running time of Lloyd’s iteration to convergence. The former
is proportional to both the number of passes through the
data and the size of the intermediate solution.

We first turn our attention to the running time of the ini-
tialization routine. It is clear that the number r of rounds
used by k-means|| is much smaller than that by k-means++.
We therefore focus on the parallel implementation and com-
pare k-means|| against Partition and Random. In Table 4
we show the total running time of these algorithms. For var-
ious settings of `, k-means|| runs much faster than Random

and Partition.

k = 500 k = 1000
Random 300.0 489.4

Partition 420.2 1,021.7
0.1k 230.2 222.6
0.5k 69.0 46.2

k-means||, ` = k 75.6 89.1
2k 69.8 86.7
10k 75.7 101.0

Table 4: Time (in minutes) for KDDCup1999.



While one can expect k-means|| to be faster than Random,
we investigate the reason why k-means|| runs faster than
Partition. Recall that both k-means|| and Partition first
select a large number of centers and then recluster the cen-
ters to find the k initial points. In Table 5 we show the total
number of intermediate centers chosen both by k-means||
and Partition before reclustering on KDDCup1999. We
observe that k-means|| is more judicious in selecting cen-
ters, and typically selects only 10–40% as many centers as
Partition, which directly translates into a faster running
time, without sacrificing the quality of the solution. Select-
ing fewer points in the intermediate state directly translates
to the observed speedup.

k = 500 k = 1000
Partition 9.5× 105 1.47× 106

0.1k 602 1,240
0.5k 591 1,124

k-means||, ` = k 1,074 2,234
2k 2,321 3,604
10k 9,116 7,588

Table 5: Number of centers for KDDCup1999 before
the reclustering.

We next show an unexpected benefit of k-means||: initial
solution found by k-means|| leads to a faster convergence of
the Lloyd’s iteration. In Table 6 we show the number of
iterations to convergence of Lloyd’s iterations for different
initializations. We observe that k-means|| typically requires
fewer iterations than k-means++ to converge to a local op-
timum, and both converge significantly faster than Random.

k = 20 k = 50 k = 100
Random 176.4 166.8 60.4

k-means++ 38.3 42.2 36.6
k-means||
` = 0.5k, r = 5

36.9 30.8 30.2

k-means||
` = 2k, r = 5

23.3 28.1 29.7

Table 6: Number of Lloyd’s iterations till conver-
gence (averaged over 10 runs) for Spam.

5.3 Trading-off quality with running time
By changing the number r of rounds, k-means|| interpo-

lates between a purely random initialization of k-means and
the biased sequential initialization of k-means++. When
r = 0 all of the points are sampled uniformly at random,
simulating the Random initialization, and when r = k, the
algorithm updates the probability distribution at every step,
simulating k-means++. In this section we explore this trade-
off. There is an additional technicality that we must be
cognizant of: whereas k-means++ draws a single center from
the joint distribution induced by D2 weighting, k-means|| se-
lects each point independently with probability proportional
to D2, selecting ` points in expectation.

We first investigate the effect of r and ` on clustering
quality. In order to reduce the variance in the computations,
and to make sure have exactly ` · r points at the end of the
point selection step, we begin by sampling exactly ` points
from the joint distribution in every round. In Figure 5.1 we

show the result on a 10% sample of KDDCup1999, with
varying values of k

When ` = k and the algorithm selects exactly k points,
we can see that the final clustering cost (after completing
the Lloyd’s iteration) is monotonically decreasing with the
number of rounds. Moreover, even a handful of rounds is
enough to substantially bring down the final cost. Increasing
` to 2k and 4k, while keeping the total number of rounds
fixed leads to an improved solution, however this benefit
becomes less pronounced as the number of rounds increases.
Experimentally we find that the sweet spot lies when r ≈ 8,
and oversampling is beneficial for r ≤ 8.

In the next set of experiments, we explore the choice of
` and r when the sampling is done with replacement, as in
specifications of k-means||. Recall we can guarantee that the
number of rounds needs to be at most O(logψ) to achieve
a constant competitive solution. However, in practice a
smaller number of rounds suffices. (Note that we need at
least k/` rounds, otherwise we run the risk of having fewer
than k centers in the initial set.)

In Figure 5.2 and Figure 5.3, we plot the cost of the final
solution as a function of the number of rounds used to ini-
tialize k-means|| on GaussMixture and Spam respectively.
We also plot the final potential achieved by k-means++ as
point of comparison. Observe that when r · ` < k, the so-
lution is substantially worse than that of k-means++. This
is not surprising since in expectation k-means|| has selected
too few points. However as soon as r · ` ≥ k, the algorithm
finds as good of an initial set as that found by k-means++.

6. ANALYSIS
In this section we present the full analysis of our algo-

rithm, which shows that in each round of the algorithm
there is a significant drop in cost of the current solution.
Specifically, we show that the cost of the solution drops by
a constant factor plus O(φ∗) in each round — this is the key
technical step in our analysis. The formal statement is the
following.

Theorem 2. Let α = exp
“
−(1− e−`/(2k))

”
≈ e−

`
2k . If

C is the set of centers at the beginning of an iteration of
Algorithm 2 and C′ is the random set of centers added in
that iteration, then

E[φX(C ∪ C′)] ≤ 8φ∗ +
1 + α

2
φX(C).

Before we proceed to prove Theorem 2, we consider its fol-
lowing simple corollary.

Corollary 3. If φ(i) is the cost of the clustering after
the ith round of Algorithm 2, then

E[φ(i)] ≤
„

1 + α

2

«i
ψ +

16

1− αφ
∗.

Proof. By an induction on i. The base case i = 0 is
trivial, as φ(0) = ψ. Assume the claim is valid up to i.
Then, we will prove it for i+ 1. From Theorem 2, we know
that

E[φ(i+1)|φ(i)] ≤ 1 + α

2
· φ(i) + 8φ∗.

By taking an expectation over φ(i), we have

E[φ(i+1)] ≤ 1 + α

2
E[φ(i)] + 8φ∗.



 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 1  10

co
st

log # Rounds

KDD Dataset, k=17

l/k=1
l/k=2
l/k=4

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 1  10

co
st

log # Rounds

KDD Dataset, k=33

l/k=1
l/k=2
l/k=4

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 1  10

co
st

log # Rounds

KDD Dataset, k=65

l/k=1
l/k=2
l/k=4

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 1  10  100

co
st

log # Rounds

KDD Dataset, k=129

l/k=1
l/k=2
l/k=4

Figure 5.1: The effect of different values of ` and the number of rounds r on the final cost of the algorithm
for a 10% sample of KDDCup1999. Each data point is the median of 11 runs of the algorithm.

By the induction hypothesis on E[φ(i)], we have

E[φ(i+1)] ≤
„

1 + α

2

«i+1

ψ + 8

„
1 + α

1− α + 1

«
φ∗

=

„
1 + α

2

«i+1

ψ +
16

1− αφ
∗.

Corollary 3 implies that after O(logψ) rounds, the cost of
the clustering is O(φ∗); Theorem 1 is then an immediate
consequence. We now proceed to establish Theorem 2.

Consider any cluster A with centroid(A) in the optimal
solution. Denote |A| = T and let a1, . . . , aT be the points
in A sorted increasingly with respect to their distance to
centroid(A). Let C′ denote the set of centers that are se-
lected during a particular iteration. For 1 ≤ t ≤ T , we
let

qt = Pr[at ∈ C′, aj /∈ C′, ∀ 1 ≤ j < t]

be the probability that the first t−1 points {a1, . . . , at−1} are
not sampled during this iteration and at is sampled. Also,
we denote by qT+1 the probability that no point is sampled
from cluster A.

Furthermore, for the remainder of this section, let D(a) =
d(a, C), where C is the set of centers in the current iteration.
Letting pt denote the probability of selecting at, we have,

by definition of the algorithm, pt = `D2(at)
φ

. Since k-means||
picks each point independently, using the convention that
pT+1 = 1, we have for all 1 ≤ t ≤ T + 1,

qt = pt

t−1Y
j=1

(1− pj).

The main idea behind the proof is to consider only those
clusters in the optimal solution that have significant cost rel-
ative to the total clustering cost. For each of these clusters,
the idea is to first express both its clustering cost and the
probability that an early point is not selected as linear func-
tions of the qt’s (Lemmas 4, 5), and then appeal to linear
programming (LP) duality in order to bound the clustering
cost itself (Lemma 6 and Corollary 7). To formalize this
idea, we start by defining

st = min

(
φA,

X
a∈A

||a− at||2
)
,

for all 1 ≤ t ≤ T , and sT+1 = φA. Then, letting φ′A =
φA(C∪C′) be the clustering cost of cluster A after the current
round of the algorithm, we have the following.
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Figure 5.2: The cost of k-means|| followed by Lloyd’s iterations as a function of the number of initialization
rounds for GaussMixture.

Lemma 4. The expected cost of clustering an optimum
cluster A after a round of Algorithm 2 is bounded as

E[φ′A] ≤
T+1X
t=1

qtst. (6.1)

Proof. We can rewrite the expectation of the clustering
cost φ′A for cluster A after one round of the algorithm as
follows:

E[φ′A] =

TX
t=1

qtE[φ′A | at ∈ C′, aj /∈ C′, ∀ 1 ≤ j < t]. (6.2)

Observe that conditioned on the fact that at ∈ C′, we can
either assign all the points in A to center at, or just stick
with the former clustering of A, whichever has a smaller
cost. Hence

E[φ′A | at ∈ C′, aj /∈ C′,∀ 1 ≤ j < t] ≤ st.

and the result follows from (6.2).

In order to minimize the right hand side of (6.1), we want
to be sure that the sampling done by the algorithm places
a lot of weight on qt for small values of t. Intuitively this
means that we are more likely to select a point close to the
optimal center of the cluster than one further away. Our
sampling based on D2(·) implies a constraint on the prob-
ability that an early point is not selected, which we detail
below.

Lemma 5. Let η0 = 1, and, for any 1 ≤ t ≤ T , ηt =Qt
j=1

“
1− D2(aj)

φA
(1− qT+1)

”
. Then, for any 0 ≤ t ≤ T ,

T+1X
r=t+1

qr ≤ ηt.

Proof. First note that qT+1 =
QT
t=1(1 − pt) ≥ 1 −PT

t=1 pt. Therefore,

1− qT+1 ≤
tX
t=1

pt = `
φA
φ
.

Thus

pt =
`D2(at)

φ
≥ D2(at)

φA
(1− qT+1).

To prove the lemma, by the definition of qr we have

T+1X
r=t+1

qr =

 
tY

j=1

(1− pj)

!
·
T+1X
r=t+1

r−1Y
j=t+1

(1− pj)pr

≤
tY
j=1

(1− pj)

≤
tY
j=1

„
1− D2(at)

φA
(1− qT+1)

«
= ηt.

Having proved this lemma, we now slightly change our
perspective and think of the values qt (1 ≤ t ≤ T + 1) as
variables that (by Lemma 5) satisfy a number of linear con-
straints and also (by Lemma 4) a linear function of which
bounds E[φ′A]. This naturally leads to an LP on these vari-
ables to get an upper bound on E[φ′A]; see Figure 6.1. We
will then use the properties of the LP and its dual to prove
the following lemma.

Lemma 6. The expected potential of an optimal cluster A
after a sampling step in Algorithm 2 is bounded as

E[φ′A] ≤ (1− qT+1)

TX
t=1

D2(at)

φA
st + ηTφA.

Proof. Since the points in A are sorted increasingly with
respect to their distances to the centroid, letting

s′t =
X
a∈A

||a− at||2, (6.3)

for 1 ≤ t ≤ T , we have that s′1 ≤ · · · ≤ s′T . Hence, since
st = min{φA, s′t}, we also have s1 ≤ · · · ≤ sT ≤ sT+1.

Now consider the LP in Figure 6.1 and its dual. Since st
is an increasing sequence, the optimal solution to the dual
must have αt = st+1 − st (letting s0 = 0). Then, we can
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Figure 5.3: The cost of k-means|| followed by Lloyd’s iterations as a function of the number of initialization
rounds for Spam.

max
q1,...,qT+1

T+1X
t=1

qtst

subject to

T+1X
r=t+1

qr ≤ ηt, (∀0 ≤ t ≤ T )

qt ≥ 0. (∀1 ≤ t ≤ T + 1)

min
α0,...,αT

TX
t=0

ηtαt

subject to

t−1X
r=0

αr ≥ st, (∀1 ≤ t ≤ T + 1)

αt ≥ 0. (∀0 ≤ t ≤ T )

Figure 6.1: LP (left) and its dual (right).

bound the value of the dual (and hence the value of the
primal, which by Lemma 4 and Lemma 5 is an upper bound
on E[φ′A]) as follows:

E[φ′A] ≤
TX
t=0

ηtαt

=

TX
t=1

st(ηt−1 − ηt) + ηT sT+1

=

TX
t=1

stηt−1

„
D2(at)

φA

«
(1− qT+1) + ηT sT+1

≤ (1− qT+1)

TX
t=1

D2(at)

φA
st + ηTφA,

where the last step follows since ηt ≤ 1.

This results in the following corollary:

Corollary 7.

E[φ′A] ≤ 8φ∗A(1− qT+1) + φAe
−(1−qT+1).

Proof. By the triangle inequality, for all a, at we have
D(at) ≤ D(a) + ||a− at||. The power-mean inequality then

implies that D2(at) ≤ 2D2(a) + 2||a− at||2. Summing over
all a ∈ A and dividing by φA, we have that

D2(at)

φA
≤ 2

T
+

2

T

s′t
φA

,

where s′t is defined in (6.3). Hence,

TX
t=1

D2(at)

φA
st ≤

TX
t=1

(
2

T
+

2

T

s′t
φA

)st

=
2

T

TX
t=1

st +
2

T

TX
t=1

s′tst
φA

≤ 2

T

TX
t=1

s′t +
2

T

TX
t=1

s′t

= 8φ∗A,

where in the last inequality, we used st ≤ s′t for the first
summation, and st ≤ φA for the second one.



Finally, noticing

ηT =

TY
j=1

„
1− D2(aj)

φA
(1− qT+1)

«

≤ exp

 
−

TX
j=1

D2(aj)

φA
(1− qT+1)

!
= exp(−(1− qT+1)),

the proof follows from Lemma 6.

We are now ready to prove the main result.

Proof of Theorem 2. Let A1, . . . , Ak be the clusters in
the optimal solution Cφ∗ . We partition these clusters into
“heavy” and “light” as follows:

CH =


A ∈ Cφ∗

˛̨ φA
φ

>
1

2k

ff
, and

CL = Cφ∗ \ CH .
Recall that

qT+1 =

TY
j=1

(1− pj) ≤ exp

 
−
X
j

pj

!
= exp

„
− `φA

φ

«
.

Then, by Corollary 7, for any heavy cluster A, we have

E[φ′A] ≤ 8φ∗A(1− qT+1) + φAe
−(1−qT+1)

≤ 8φ∗A + exp(−(1− e−`/2k))φA

= 8φ∗A + αφA.

Summing up over all A ∈ CH , we get

E[φ′CH
] ≤ 8φ∗CH

+ αφCH .

Then, by noting that

φCL ≤
φ

2k
· |CL| ≤

φ

2k
k =

φ

2
,

and that E[φ′CL
] ≤ φCL , we have

E[φ′] ≤ 8φ∗CH
+ αφCH + φCL

= 8φ∗CH
+ αφ+ (1− α)φCL

≤ 8φ∗CH
+ (α+ (1− α)/2)φ

≤ 8φ∗ + (α+ (1− α)/2)φ.

7. CONCLUSIONS
In this paper we obtained an efficient parallel version

k-means|| of the inherently sequential k-means++. The algo-
rithm is simple and embarrassingly parallel and hence ad-
mits easy realization in any parallel computational model.
Using a non-trivial analysis, we also show that k-means||
achieves a constant factor approximation to the optimum.
Experimental results on large real-world datasets (on which
many existing algorithms for k-means can grind for a long
time) demonstrate the scalability of k-means||.

There have been several modifications to the basic k-means
algorithm to suit specific applications. It will be interest-
ing to see if such modifications can also be efficiently paral-
lelized.
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