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Abstract

Deep Neural Networks (DNNs) have shown tremen-
dous progress in accurately performing regression, clas-
sification, and control tasks that traditional programming
paradigms have not been able to achieve. However,
their lack of interpretability and performance guarantees
presents challenges when considering deployment to sensi-
tive tasks with limited margin of error, such as control of
autonomous vehicles, military equipment, or robotics. One
pressing problem with modern neural networks is the exis-
tence of adversarial examples, where small perturbations
in inputs can result in dramatically different output classifi-
cations. To combat this problem, developing adversarially-
robust networks is an active area of research. Currently,
model robustness is evaluated against first-order adver-
saries, i.e. adversaries generated via gradient methods.
It is an open research question whether these first-order
methods are good metrics for testing the overall robust-
ness of neural networks to all adversaries. To tackle this
problem, we use a neural network constraint solver devel-
oped by Stanford’s Reluplex team. By using a novel algo-
rithm that optimizes the number of linear constraints that
must be checked, certain properties about general robust-
ness can be guaranteed for all attacks, rather than only
first-order ones. We examine the robustness of two simple
models, one trained only on MNIST data and one adver-
sarially trained using a modern first-order adversarial de-
fense strategy called logit pairing. In both networks, we
found that the first-order gradient well-approximates the
guaranteed closest adversary and that adversarially train-
ing against first-order attacks generalizes to all attacks. Fu-
ture directions involve scaling Reluplex to handler deeper
networks to verify this trend.
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1. Introduction

Following the success of applying convolutional layers
to image recognition[ 7], neural networks have gained wide
use in advanced machine learning systems. Current net-
works can outperform humans at many tasks, including im-
age recognition[3], arcade games [10], and board games
like Go [12], and they have become the de facto approach
to achieve top performance on tasks traditional algorithms
have been unable perform consistently on.

Although they outperform humans at many things, there
are downsides to the use of modern neural networks. Firstly,
deep neural networks lack interpretibility: although they get
the correct answer, we are often not sure why. Unlike tra-
ditional coding pipelines where modularity enables manual
proofs of correctness and isolated failures, deep end-to-end
models are notoriously hard to interpret, and when they fail
it’s difficult to understand why. Although some advances
have been made in determining what each filter might repre-
sent in a convolutional model [ 13], for more complex games
like Go or Atari, understanding their reasoning is less clear.

Adversarial examples [2] represent an even larger prob-
lem for modern DNNs. By perturbing input images even
slightly in the direction of the gradient of a loss function
weighing an incorrect network output, new examples can
be generated that are visually identical to existing examples
but that networks consistently misclassify with high con-
fidence. Such errors on visually imperceptible differences
create a major challenge for networks to have consistency
guarantees in the real world, especially when such examples
can be generated without access to the network at hand[ | 1].

An interesting question is what guarantees can even be
made about networks being robust against adversarial ex-
amples, especially ones trained to defend against these ad-
versarial attacks. Although this problem is NP-hard, recent
work by the Reluplex [5] team has created a system for ver-
ifying properties and constraints of networks with the non-
convex Rectified Linear Unit (ReLU) activation function.
With this method, we can find the minimum perturbation an
input must undergo in order to be misclassified, thus finding
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the closest adversarial example for a certain input.

Prior to complete solvers like Reluplex, first-order
attacks that use the gradient of a network to compute
adversarial images have been the standard to both train
and test for adversarial robustness. However, it is an
open research question whether these gradient-based
defenses actually improve robustness against all attacks
or just first-order attacks. In our project, we evaluate the
robustness properties of two simple MNIST classifiers [8];
one trained purely on clean data, and one adversarially
trained with the state of the art defense logit pairing [4].
For both networks, we compare closest adversaries found
via Reluplex and first-order methods to determine if there
exist closer adversaries that first-order methods cannot find.
We aimed to shed light on the following questions:

1. Are first-order attacks good universal indicators
of robustness?

2. Do first-order defenses generalize to non-first-
order attacks?

2. Related Work

Much work has been devoted to protecting models from
adversarial examples. Generally, adversarial examples can
be generated in two ways: white box attacks, where the at-
tacker has access to the network and its weights, and black
box attacks, which don’t have access to network specifics
[11]. The focus of our study is on white box attacks. A com-
mon method for generating white box attacks is projected
gradient descent [9], considered the closest “first-order ad-
versary”, where a random point in a C*° ball around a data
example starts as a seed and iteratively follows that gradient
of the network’s loss with respect to the input to generate an
adversarial example.

Adpversarial training against first-order adversaries is the
main method of making models adversarially robust, where
models are trained on both the train data distribution and an
adversarial distribution generated from that data distribution
[2]. In most recent papers, these adversarial examples were
generated using projected gradient descent [9]. A recent de-
velopment in adversarial training has been adversarial logit
pairing [4], where the logits of the outputs of an example
and it’s adversary are encouraged, through a separate loss
term, to be similar, resulting in state of the art performance
on first-order attacks.

One recently discovered problem with determining the
robustness of models against adversarial examples is the
issue of gradient masking, where the defense techniques
make the gradients of a network less useful in generating
adversarial examples, but don’t make them less suscepti-
ble to examples generated through another mechanism[1].

These obfuscated gradients, which hinder iteration-based
first-order attacks, have been shown to give networks a false
sense of security, where first-order robustness is a result of
bad gradients rather than a sound defense. One of the main
advantages of using a complete solver like Reluplex is that
robustness is guaranteed, because it solves for examples
within nearby L°°-¢ balls.

3. Methods
3.1. Marabou/Reluplex

Reluplex is a decision procedure to solve linear equa-
tions that have non-linear constraints, such as neural net-
works with ReLU activation functions. As mentioned ear-
lier, this task is typically NP-hard, making it intractable to
compute in the worst case. However, the novelty of Relu-
plex [5] is that, instead of searching the 2™ potential states
of ReLU nodes as being active or inactive, it lazily solves
an initial configuration and is able to infer from it that cer-
tain constraints must be fixed in an active or inactive state,
allowing it to scale to larger networks, such as the ones we
examine. Through using this linear solver, we are able to
explicitly find whether adversarial examples exist near our
data and test distribution. One subtlety to note is that Relu-
plex can’t deal with softmax activation functions. However,
since the classified category of our network is simply the
maximum index in our logits layer, we don’t need softmax
to see when we have a misclassification error.

When translating what robustness of a network means,
we use the definition by the Reluplex team [6]:

A network N is d-locally robust at a point x iff
VZ |2 —Zpl| <d —  N(&) = N(£p)

In English, the above definition is basically saying a
point is é-locally robust if the 6-L., ball around x( con-
tains no misclassification errors. In Reluplex, we encode the
negation of this robustness property to solve for a §-norm
perturbation which results in a misclassified image. Run-
ning Reluplex was the clear bottleneck of our project, as it
could sometimes take up to 10 minutes to verify whether a
value of § was robust or not. As expected, adversarial guar-
entees require a fair amount of compute, and Reluplex has
yet to be optimized for parallel computing.

3.2. Baseline Vanilla MNIST Network

We trained a simple multilayer perceptron (MLP) net-
work (i.e. a model we learned in class that is NOT a
deep model) to classify 28x28 pixel images from MNIST,
a database with 60,000 training and 10,000 testing images
of handwritten digits. We divide the pixel values by 255 to
normalize the pixels between 0 and 1. The MLP consisted



of a single hidden layer with 50 nodes with ReLU activa-
tions and an output layer with 10 nodes and a softmax ac-
tivation, corresponding to class probabilities. We train with
respect to a categorical cross entropy loss using an Adam
optimizer with learning rate 1.0 * 10~%. We trained for a
total of 60,000 batches of batch size 64, or 64 epochs, by
which time our network had converged.

3.3. Adversarially Trained Network
3.3.1 Adversarial Training

Additionally, we created an adversarial multilayer percep-
tron, which started pretrained with weights from our ini-
tial vanilla model. Basic adversarial training involves the
following: for each batch of examples {z("), ... x("™)},
a set of adversarial images is generated {z(V), ..., (™}
with respect to the current network weights. Typically these
adversarial images are generated using some kind of first-
order method (i.e. involving some gradient). The first-order
method we chose to use was the iterated Fast Gradient Sign
Method (FGSM), which iterated over an input image with
the update rule:

:I'/-t-"_l = :L't — Q% Sgn(vIL(ngvy/))

where 2V is the original image, ¢ is the number of time
steps, « is the step size, and L(6, x,y’) is loss of the net-
work output with respect to some adversarial label 3’ (the
class we are trying to misclassify as). We initialize the ad-
versarial search process with a random noise perturbation
within our 6-L, ball, and we clip to make sure pixels stay
within this § sized ball. While training, we ran 40 iterations
when generating a batch of adversarial examples, which
were targeted towards random class labels. The step size for
iterated FGSM was simply a fraction of the ¢ ball and the
step size. When adversarially training our network, we ran
250k batches of size 64 (about 265 epochs) where each ad-
versarial batch was generated within a 0.3 normalized L,
ball, or a 76.5 pixel ball. Since our accuracy on clean ex-
amples began to drop by a notable amount, we trained an
additional 250k batches on examples only within a 0.1 nor-
malized L, ball, or a 25.5 pixel ball, so that the aggressive
adversaries wouldn’t have as large of an impact on the loss.
We stopped after these iterations because our network per-
formance had converged.

3.3.2 Adversarial Loss with Logit Training

Since we are typically interested in having a loss that re-
wards classifying adversaries and clean images correctly,
the loss function is typically

Lad'u(X7 X7 Y) = Lo’r‘ig(X? Y) + LOTig(X’ Y)

where L4 is our typical loss function with respect to
an input batch (in this case the cross entropy loss). In addi-
tion to this traditional adversarial loss, the modern defense
Adversarial Logit Pairing defines the new loss:

Ladvlog (Xv X? Y) = Ludv (Xv Xa Y)

+)\% Em: L(f(z;6), f(37;0))
=1

where f(x(?);6) is a function mapping inputs to the logit
layer of a model and L is any loss that promotes close-
ness of its two inputs (in their paper and ours we simply
use Lo loss). Similar to other regularization methods dis-
cussed in class, this added loss is equivalent to the prob-
abilitic assumption that the error in the logit layer between
original and adversarial images is best represented by Gaus-
sian noise. While training, we use a value of A\ = 1.

3.4. Finding Closest Adversaries

Finding the closest adversaries was relatively straight-
forward. First we found the closest adversarial example for
iterated FGSM by repeatedly binary searching over our §
balls for FGSM and seeing if the network misclassified it,
starting with d,,5,, = 0 and 6,4, = 1 and attempting for
every class as opposed to a random class. We only found
these adversaries for examples that a network initially clas-
sified as correct. We performed a similar binary search with
Reluplex to find the guaranteed closest adversary.

4. Results

4.1. Test Accuracy on Vanilla and Adversarial
Trained Network

After training, we evaluated both the Vanilla and adver-
sarially trained models on the 10,000 clean test examples
in MNIST and 10,000 adversaries generated from those ex-
amples with 0.2 normalized ¢-balls generated by FGSM.
We found that the Vanilla model got 97% accuracy on the
clean examples but only 14% accuracy on adversaries. On
the other hand, the adversarially trained network got 96.5%
accuracy on the clean examples and 89% accuracy on the
adversaries. A concern we had was whether the small ca-
pacity architecture we used could learn an adequate MNIST
classifier and an adversarially robust model with logit pair-
ing. The significant increase in accuracy on adversaries and
comparable accuracy on clean examples in the adversarially
trained model when compared to the Vanilla one indicates
that adversarial training indeed did increase robustness to-
wards first-order attacks, even under the low-capacity con-
straint.



4.2. Similarity between FGSM and Marabou ad-
versaries

The next thing we tested was the cosine similarity be-
tween the closest adversaries generated via FGSM and Re-
luplex on both the Vanilla network (Fig. 1) and the adver-
sarially trained network (Fig. 3). Overall, we observed high
levels of similarity in the direction of perturbations of the
two attacks in both networks. In particular, among all the
images tested, neither network found two perturbations with
a negative cosine similarity, providing preliminary evidence
to support that the first-order attack is a good approximation
of the direction of the closest attack.

Notably, the cosine similarity of the perturbations in the
adversarially trained network were notably lower than in the
Vanilla one. We hypothesize a few possible explanations for
this behavior.

First, we can think of our MLP as a piece-wise linear
model with 2°0 different configurations depending on the
activation state of the ReLUs. Since we are searching a
larger 0 ball in the adversarially trained network, there are
a greater number of possible linear modes that the network
could be in, as there is a wider input space over which the
activation state of a ReLLU could flip. Therefore, it is pos-
sible that the greater variation in linear modes creates po-
tential adversaries in different linear modes that gradients
will not find, which posits an explanation for the lower co-
sine similarity. Alternatively, in the Vanilla network, the
model behaves “more linearly” in the sense that there are a
restricted number of linear modes. This provides an expla-
nation for why the perturbations were more aligned, as the
only way to minimize a loss in a linear model is through the
first-order gradient.

A second explanation is Athalye et al.’s hypothesis of
obfuscated gradients [1], which hypothesizes that first or-
der defense techniques cause the gradient to become less
effective at generating adversarial images after training. Al-
though in his paper, such forms of ”gradient masking” typ-
ically occurred in deeper networks, this could potentially
also be the beginning of such a phenomenon, which could
be further supported by testing deeper networks.

Examples of perturbation alignment and nonalignment
(in the case of the adversarially trained) for each network
and each adversary method can be seen in Figures 2 and 4.
Notably, we can notice for high levels of cosine similarity,
both perturbations look nearly identical, which supports that
the first-order attack is a good approximation of the closest
adversary in many cases.

4.3. Similarities in § values for FGSM and Marabou

We compare the d-robustness (defined as the distance of
the closest adversary) in both the Vanilla network (Fig. 5)
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Figure 1: The frequency of cosine similarity ranges between
adversaries generated by FGSM and Reluplex on the Vanilla
Network.
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Figure 2: Heatmap of perturbation in pixels to input images
by FGSM and Reluplex on the Vanilla Network.
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Figure 3: The frequency of cosine similarity ranges between
adversaries generated by FGSM and Reluplex on the Adver-
sarilly Trained Network.

and the adversarially trained network (Fig. 6).

In the Vanilla network (Fig. 5), we see that the distance
of closest adversary is only marginally smaller than the one
found by FGSM, which supports that in our MLP architec-
ture, the first-order approximation of an adversary is a good
approximation of the closest adversary.

Figure 6 displays the same phenomenon in the adver-
sarially trained network. That is, the distance of the closest
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Figure 4: Heatmap of perturbation in pixels to input images
by FGSM and Reluplex on the Vanilla Network.
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Figure 5: The frequency of examples that were robust in the
FGSM and Reluplex sense for § pixel ranges on the Vanilla
Network.

adversary is similar among both the FGSM and Reluplex at-
tack. This result is significant as it provides evidence to sup-
port that adversarial training against adversaries generated
via first-order attacks generalizes to all possible attacks.

Figure 7 documents the significant increase in robustness
we observed using adversarial training across both types
of attacks. In particular, we can see that the average 0-
robustness for the adversarially-trained network increased
drastically, from about 6 pixels for the Vanilla network to
about 20 pixels for the adversarial network. Taken together,
these results are positive news for the machine learning
community, as they seem to suggest that training a network
to be robust to first-order attacks can increase robustness to
not only first-order attacks (as shown in literature) but all
attacks.

5. Conclusion and Future Work

In conclusion, we were able to provide some preliminary
answers to open research questions surrounding non-first-
order adversarial attacks. We were able to, for the first time,
provide answers to some of these questions through access
to Reluplex, a complete and sound linear constraint solver
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Figure 6: The frequency of examples that were robust in the
FGSM and Reluplex sense for ¢ pixel ranges on the Adver-
sarially Trained Network.
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Figure 7: Average minimal § value for Vanilla and Robust
network in the FGSM and Repluplex sense.

that could be be used to find the guaranteed closest adver-
sary around a point.

Our main results were two-fold. First, first-order attacks
provide good approximations of the closest adversary in
both adversarially untrained and adversarially trained net-
works, suggesting that benchmarking against first-order at-
tacks is a good measure of overall robustness. Furthermore,
adversarial defense strategies targeted towards first-order
attacks do a very good job of generalizing to non-first or-
der attacks.

A clear direction of future work is improving the Re-
luplex solver to support larger architectures so we can ex-
pand the current study to larger and deep networks. It’d
be interesting to see if the more complicated loss surfaces
and greater variation in linear modes present in deeper mod-
els could lead to more pathological non-first-order attacks.
This direction would also provide us with the means to bet-
ter test Athalye ef al.’s hypothesis of obfuscated gradients
on similar networks to those studied in the paper.
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MNIST. Generated baseline adversarial examples.
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constraints; tested J robustness; Generated figures
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saries.
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References

[1] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradi-
ents give a false sense of security: Circumventing defenses
to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

[2] L J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples (2014). arXiv preprint
arXiv:1412.6572.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE International Con-
ference on Computer Vision, 2015.

[4] H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit
pairing. arXiv preprint arXiv:1803.06373, 2018.

[5] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochen-
derfer. Reluplex: An efficient smt solver for verifying deep
neural networks. In International Conference on Computer
Aided Verification, pages 97-117. Springer, 2017.

[6] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochen-
derfer. Towards proving the adversarial robustness of deep
neural networks. arXiv preprint arXiv:1709.02802, 2017.

[7]1 A. Krizhevsky, I. Sutskever, and G. E. Hinton. 1 ImageNet
Classification with Deep Convolutional Neural Networks.
Advances In Neural Information Processing Systems, 2012.

[8] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit
database. AT&T Labs [Online]. Available: http://yann. le-
cun. com/exdb/mnist, 2, 2010.

[9] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to adver-
sarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. ~ Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[11] N. Papernot, P. D. McDaniel, 1. J. Goodfellow, S. Jha, Z. B.
Celik, and A. Swami. Practical black-box attacks against
deep learning systems using adversarial examples. CoRR,
abs/1602.02697, 2016.

[12] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

[13] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep in-
side convolutional networks: Visualising image classifica-
tion models and saliency maps. CoRR, abs/1312.6034, 2013.



