
Math 396. The C∞ hairy ball theorem

1. Introduction

Consider the unit sphere Sn ⊆ Rn+1 with n > 0. If n is odd then there exists a nowhere-vanishing
smooth vector field on Sn. Indeed, if n = 2k + 1 then consider the vector field ~v on Rn+1 = R2k+2

given by

~v = (−x2∂x1 + x1∂x2) + · · ·+ (−x2k+2∂x2k+1
+ x2k+1∂x2k+2

) =
k∑

j=0

(−x2j+2∂x2j+1 + x2j+1∂x2j+2).

For any point p ∈ Sn it is easy to see that ~v(p) ∈ Tp(R2k+2) is perpendicular to the line spanned
by

∑
i xi(p)∂xi |p, so it lies in the hyperplane Tp(Sn) orthogonal to this line. In other words, the

smooth section ~v|Sn of the pullback bundle (T (Rn+1))|Sn over Sn takes values in the subbundle
T (Sn), which is to say that ~v|Sn is a smooth vector field on the manifold Sn. This is a visibly
nowhere-vanishing vector field. For example, in the case n = 1 this vector field along the circle
S1 ⊆ R2 is the S1-restriction of the angular vector field −y∂x + x∂y = −∂θ.

The above construction does not work if n is even (think about it!), so there arises the question
of whether there exists a nowhere-vanishing smooth vector field on Sn for even n. The answer
is negative, and is called the hairy ball theorem (since it “explains” why one cannot continuously
comb the hair on a ball without a bald spot):

Theorem 1.1. A smooth vector field on Sn must vanish somewhere if n is even.

In fact, a much stronger theorem is true: a continuous vector field on Sn must vanish somewhere
when n is even. Our proof of the hairy ball theorem in the smooth case will use the smoothness in
the context of deRham cohomology and its smooth-homotopy invariance with respect to pullback
maps; at one key step we also use Stokes’ theorem. A similar cohomology theory is constructed in
algebraic topology (called singular cohomology) without the appeal to differential forms (and with
the topological theory of orientation replacing the appeal to Stokes’ theorem). This stronger tool
enables our proof in the smooth case to be adapted to work in the continuous case. Remark 2.1
says more about this.

2. Proof of hairy ball theorem

Let ~v be a smooth vector field on Sn, and assume that it is nowhere-vanishing. (We do not use
that n is even until the very end of the proof.) For each p ∈ Sn, let γp : [0, π/||~v(p)||] → Sn be
the smooth parameteric great circle (with constant speed) going from p to −p with velocity vector
γ′p(0) = ~v(p) 6= 0 at t = 0. (This would not make sense if ~v(p) = 0.) Working in the plane spanned
by p ∈ Rn+1 and ~v(p) ∈ Tp(Rn+1) ' Rn+1 in Rn+1, we get the formula

γp(t) = cos(t||~v(p)||)p + sin(t||~v(p)||) ~v(p)
||~v(p)||

∈ Sn ⊆ Rn+1.

(These algebraic formulas would not make sense if ~v vanishes somewhere on Sn.) Consider the
“flow” mapping

F : Sn × [0, 1] → Sn

defined by (p, t) 7→ γp(πt/||~v(p)||). The formula for γp(t) makes it clear that F is a smooth map
(and is continuous if ~v is merely continuous and nowhere-vanishing). Now obviously F (p, 0) = p for
all p ∈ Sn and F (p, 1) = −p for all p ∈ Sn. Hence, F defines a smooth homotopy from the identity
map on Sn to the antipodal map p 7→ −p on Sn (and it is a continuous homotopy if ~v is merely
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continuous and nowhere-vanishing). Thus, to prove the hairy ball theorem we just have to prove
that if n is even then the identity and antipodal maps Sn ⇒ Sn are not smoothly homotopic to
each other; likewise to get the continuous version we just need to prove that there is no continuous
homotopy deforming one of these maps into the other.

To prove the non-existence of such a homotopy, we shall use the (smooth) homotopy invariance
of deRham cohomology. Indeed, by this homotopy-invariance we get that under the existence of
such a ~v the antipodal map A : Sn → Sn induces the identity map A∗ : Hk

dR(Sn) → Hk
dR(Sn)

on the kth deRham cohomology of Sn for all k ≥ 0. Let us focus on the case k = n. To get a
contradiction, we just have to prove that if n is even then A∗ as a self-map of Hn

dR(Sn) is not the
identity map. (On HW 12, Exercise 4, you will prove that Hk

dR(Sn) = 0 for 0 < k < n. This is why
we do not try to study the action on these intermediate cohomologies of Sn. Likewise, we do not
consider k = 0 since the action of A∗ on H0

dR(Sn) = R is clearly the identity map and so this is
not useful either for getting a contradiction.)

Consider the n-form on Rn+1 defined by

ω =
n+1∑
i=1

(−1)i−1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1.

Clearly dω = (n+1)dx1∧· · ·∧dxn+1, so for the unit ball Bn+1 ⊆ Rn+1 with its standard orientation
we have

∫
Bn+1 dω = (n + 1)vol(Bn+1) 6= 0. (See the handout on “how to compute integrals” for

the justification of this latter calculation; the point requiring a moment of thought is the fact
that {x1, . . . , xn+1} is not a coordinate system on the manifold with boundary Bn+1.) By Stokes’
theorem for Bn+1, if we let η = ω|Sn and we give Sn = ∂Bn+1 the induced boundary orientation
then

∫
Sn η =

∫
Bn+1 dω 6= 0. Hence, by Stokes’ theorem for the boundaryless smooth compact

oriented manifold Sn (!) we conclude that the top-degree (hence closed!) differential form η on Sn

is not exact. That is, its deRham cohomology class [η] ∈ Hn
dR(Sn) is non-zero. (Note that ω is

not closed as an n-form on Rn+1, but its pullback η on Sn is necessarily closed on Sn purely for
elementary reasons, as Sn is n-dimensional. There is no need to verify such closedness on Sn by
bare-hands calculation in local coordinates on Sn.)

By the existence of the smooth homotopy between A and the identity map (due to the assumed
existence of the nowhere-vanishing smooth vector field ~v on Sn), it follows that A∗ on Hn

dR(Sn) is
the identity map, so [A∗(η)] = A∗([η]) is equal to [η]. That is, the top-degree differential forms
A∗(η) and η on Sn differ by an exact form. But the antipodal map A : Sn → Sn is induced by the
negation map N : Rn+1 → Rn+1, and by inspection of the definition of ω ∈ Ωn

Rn+1(Rn+1) we have
N∗(ω) = (−1)n+1ω. Hence, pulling back this equality to the sphere gives A∗(η) = (−1)n+1 · η in
Ωn

Sn(Sn). Thus, in Hn
dR(Sn) we have

[η] = A∗([η]) = [A∗(η)] = [(−1)n+1η] = (−1)n+1[η].

If n is even we therefore have [η] = −[η], so [η] = 0. But we have already seen via Stokes’
theorem for the boundaryless manifold Sn and for the manifold with boundary Bn+1 that [η] is
nonzero. This completes the proof.

Remark 2.1. In HW 12, Exercise 4, it is proved that Hn
dR(Sn) is 1-dimensional (and Hk

dR(Sn) = 0
for 0 < k < n) via induction on n and a Mayer-Vietoris calculation. In the topological theory of
singular cohomology there is an analogous Mayer-Vietoris machine, and by the same method it can
thereby be proved that the top-degree singular cohomology Hn

sing(S
n) is also 1-dimensional over R.

(This also follows from deRham’s theorem that compares the two cohomology theories on smooth
manifolds, but it is much easier to compute in each cohomology theory separately in this particular
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case.) Thus, for the antipodal map A : Sn → Sn it follows by pure thought that the pullback
map A∗ : Hn

dR(Sn) → Hn
dR(Sn) that is a linear self-map of a 1-dimensional vector space must be

multiplication by some scalar cn ∈ R. But A ◦ A = idSn , so by functoriality of cohomology with
respect to pullback we get c2

n = 1, or in other words cn = ±1 (perhaps depending on n). The same
goes in singular cohomology. If for some n we can calculate cn = −1, it then follows that A∗ is not
the identity on the 1-dimensional degree-n cohomology of Sn, so A cannot be smoothly homotopic
to the identity map on Sn for such n; since singular cohomology has homotopy-invariance as well
(with respect to continuous homotopy), it likewise follows that if this sign for the action of A on
degree-n singular cohomology of Sn can be computed to be −1 for some n then A cannot even be
continuously homotopic to the identity map on Sn.

To summarize, the key point of the proof of the hairy ball theorem (in either the smooth or
continuous cases) is to compute that (−1)n+1 is the sign that gives the action of antipodal-pullback
on top-degree cohomology (deRham or singular) of Sn for any n > 0. So what has to be done
is that some nonzero cohomology class ξ has to be found for which its antipodal pullback can be
determined (as either ξ or −ξ). In the proof above we found such a class in deRham cohomology,
namely the one represented by the closed form ω|Sn (for which we obtained A∗(ω|Sn) = (−1)n+1ω|Sn

in Ωn
Sn(Sn) and not even just modulo exact forms). In the topological setting one has to use what

is called the fundamental class of the manifold Sn; this is a certain degree-n singular cohomology
class that is closely tied up with the topological theory of orientation (which can be given in purely
topological terms for any topological manifold, without any mention of a tangent bundle or oriented
atlases which do not make sense without some differentiability anyway). From this viewpoint, the
meaning of the sign (−1)n+1 is the rather concrete fact that the antipodal map A : Sn → Sn

is orientation-preserving for odd n and orientation-reserving for even n (something that is very
obvious in suitable coordinates for the C∞-manifold Sn).


