Paying attention to toxic comments online

Manav Kohli*
Intuit
manav_kohli@intuit.com

Emily Kuehler
Stanford University
ekuehler@stanford.edu

John Palowitch
Google
palowitch@google.com

Abstract

Deep learning methods have recently begun to be used to detect abusive comments
made in online forums. Detecting, and classifying, online abusive language is a
non-trivial NLP challenge because online comments are made in a wide variety
of contexts, and contain words from many different formal and informal lexicons.
Furthermore, spelling and grammar mistakes (many of them intentional) abound.
In this paper, we examine and implement baseline and existing approaches to the
task of classifying online abuse, and also introduce and analyze variants of the
existing models. Our goal is to provide a scientifically rigorous perspective on
the strengths and weaknesses of the range of approaches. As such, we apply each
method to two different data sets, and provide in-depth visualizations of model
performance and explanatory wins and losses. Additionally, we provide a fully
reproducible open-source code repository.

1 Introduction

As online news, social, and gaming platforms continue to grow their user bases, user-generated
content moderation has become an increasingly important task. This is especially true in our era of
heightened political polarization and elevated awareness of the effect of hate speech on marginalized
communities. In a recent Pew survey, 39% of experts and leaders in fields related to online discourse
said that the future will be more shaped by harassment and troll-like behaviors, versus 19% who
said it would be less shaped [10]. Most companies that rely on online content now deploy content-
moderation systems that are at least partially automatic, and research groups have begun to direct
programs toward this issue (e.g. the Jigsaw team from Google).

Detecting and controlling online verbal abuse in an automated fashion is an inherently natural lan-
guage processing task. Recently, deep neural networks have been explored as potential engines for
abusive and toxic comment detection. Current research papers on this topic has taken one of three
flavors: (i) introduction or analysis of text-based toxicity detection models, (ii) development of toxi-
city detection approaches which rely heavily on user metadata or non-text sources, or (iii) discussion
and comparisons of methods for preprocessing online comment data for NLP task related to abuse
detection. We discuss the particular publications in these categories in the next section. Our work

* Authors are listed alphabetically

falls into the first category; we discuss the state-of-the-art models for toxic comment detection based
solely on textual information. This paper’s contributions to this area are three-fold:

e We provide a rigorous and reproducible application of a wide array of baseline and existing
models on two data sets

e We introduce novel character, word, and sentence-level RNN and assess the added-value
of attention mechanisms in some cases

e As our data sets involve toxic comments that are sub-classified into types, allowing for
multiple types, we discuss the modeling nuances this entails

The remainder of this paper is organized as follows. In Section 1.1 we discuss existing work. In
Section 1.3 we discuss the nuances of using multiple-type training examples and the resultant mod-
eling strategies we employ. In Section 2 we discuss and show results from baseline models on the
data sets. In Section 3 we discuss and show results from word-based recurrent neural networks. In
Section 4 we discuss and show results from character-based recurrent neural networks. In Section
5 we discuss the training of custom word embeddings, and use them with the best versions of our
approaches discussed in prior sections. In Section 6 we give a summary of our results.

1.1 Existing work

A recent well-cited non-neural approach to toxic comment detection introduced an NLP regression
classifier to the n-gram, linguistic, syntactic, and semantic features of comments posted on Yahoo!
Finance and News [7]. Separately, the authors of [12] obtained human ratings on a large corpus of
Wikipedia comments, then used ML approaches with all combinations of word/character n-grams,
logistic/multilayer-perceptron (MLP), and discrete/continuous rater labels. A survey of other ap-
proaches to online abuse detection was given in [11], containing a summary of common features
used for non-neural and early neural approaches.

The authors of [6] compared deep learning approaches to the existing non-neural methods, including
that of [7]. They saw gains over existing methods from word and character recurrent neural networks
(RNN), as well as from a support vector machine (SVM) classifier supported by naive bayes (NB)
scores on character counts. The authors of [2] applied deep learning comment classification meth-
ods to a large Twitter data set. They used convolutional neural networks (CNN), long-short-term
memory networks (LSTM), and both SVMs and gradient-boosted decision trees (GBDT) with word
and character embeddings trained during the deep learning model fitting. The authors of [8] trained
RNNs and RNNs with attention mechanisms on (i) a large corpus of Greek news site comments and
(i1) Wikipedia talk page comments, finding that these deep learning approaches outperformed the
word/char logistic/MLP models used in [12]. Finally, a class project from Stanford’s 2017 section
of CS224n used the same Wikipedia data set analyzed in [12] with an LSTM network and both a
character and word based CNN [3].

1.2 Data sets

The first data set we use is constructed from two corpi from the Wikipedia Detox data set: a collec-
tion of Wikipedia.org comments with boolean decisions from raters on whether or not the comments
were aggressive [13], and those same comments with boolean decisions from (different) raters on
whether or not the comments represented personal attacks [14]. As in [12], we use the majority vote
from multiple raters to decide the final comment label. Recall that this data set was also analysed
in [8] and [3], making this a good baseline dataset on which to test our approaches. We combine
the labels of both classes into one data set, so that some comments have multiple labels. Each class
comprises about 10% of total comments, and the classes have about 0.89 Pearson correlation. The
second data set we use has not to our knowledge been analyzed in any publication. The data is
taken from a Kaggle competition, hosted by Google’s Jigsaw team, for classifying Wikipedia com-
ments into any combination of six types of “toxicity”: toxic, severe toxic, obscene, threat, insult,
and identity hate. These labels were again obtained by human ratings.

The Detox data set had over 100k labeled examples, and the Jigsaw data set had over 160k labeled
examples. We shuffled the examples and split each data set into a 3:1:1 train, dev, and test partition.
The partitions were fixed across the various models with a random seed. The dev set was used to

choose the best set of model parameters across training epochs performed on the train set. Final
evaluation was conducted on the test set.

1.3 Sigmoid multi-membership model

The data sets we analyze come with the challenge of potentially multiple categories per training
and testing example. One easy solution to this problem is to fit one model for each class in a one-
vs-all fashion. This approach has the obvious benefit of being able to optimize cost on each class
directly. However, a disadvantage to this approach is training time: six models need to be fit, instead
of (possibly) just one. Furthermore, a comprehensive deep learning model could learn important
correlations between classes, boosting overall accuracy.

We can account for the presence of multiple classes per example by putting the final logit layer of a
classification model through an entry-wise sigmoid instead of a softmax. Correspondingly, we use a
binary cross-entropy score rather than the standard softmax cross-entropy. For example, let h be the
final logit layer of a model. In an application to the Jigsaw data, h would be 1 x 6 row vector. Our
final prediction vector in a sigmoid model would be § = o(h) where o is the entry-wise sigmoid
function. The corresponding loss function is

K

Cly,9) ==Y —yrlog(fk) + (1 — yx) log(gx)
k=1

Note that this loss function reduces to standard cross-entropy loss when there is just one correct
class. The sigmoid model allows multiple values of § to be near 1, and therefore can learn when
to assign multiple classes high probabilitiy. This will be useful when, as just one example, a set of
comments in the training data are labelled both “toxic” and “obscene”.

1.4 Evaluation metric

The evaluation metric we chose is the class-wise average of the area under the receiver operating
characteristic curve (AUC), which is the measure of classification accuracy integrated over classifi-
cation thresholds. Explicitly, define the two dimensional function

f@) = (r,p)

where ¢ € [0, 1] and 7, p the recall and precision (averaged over multiple classes). The AUC metric
is defined as the area under the curve defined by the (r, p) pairs produced by moving ¢ continuously
from 0 to 1. Mathematically speaking, this metric is equivalent to the probability that a randomly
chosen positive example has a higher predicted probability (for the positive class) than a randomly
chosen negative example (for the same positive class).

2 Baseline models

As baseline models we trained both a naive bayes (NB) model and logistic regression (LR) model
on each class. Both models were trained on sparse sentence vectors with the 10,000 most-common
1,2-ngram token features. For comparison, we also trained a sigmoid version of LR:

Classifier identity_hate insult obscene severe_toxic threat toxic averages
0 sigmoid 09576 0.9623 09741 0.9809 0.9791 0.9445 0.966417
4 logistic 0.9650 09715 0.9812 0.9824 09797 0.9608 0.973433

Classifier aggression attack averages
0 sigmoid 0.9445 0.9809 0.96270
4 logistic 0.9424 09495 0.94595

Table 1: Baseline results for Jigsaw data (top) and Detox data (bottom)

Interestingly, the sigmoid model performs slightly worse across classes on the Jigsaw data, but better
across classes on the Detox data. To save both space and training time, we treat the sigmoid model
as default.

3 Word-level RNNs

We built and trained a variety of word-level recurrent neural networks, each sharing the following
characteristics. Token-level sentence vectors were computed from the top 30,000 tokens. Sentences
were padded or (non-randomly) truncated to length 150. Tokens in each sentence were given pre-
trained embeddings from GloVe vectors as provided by [9]. The Adam optimizer [4] was used
with an initial learning rate of 0.001, decreasing by a factor of 0.95 every 100 steps. With a batch
size of 32, there are about 2,000 steps on the Detox training data and 3,000 steps on the Jigsaw
training data. All networks mentioned in this section were built using standard library functions
from TensorF1low [1]. Our baseline RNN employs both mean and max pooling; explicitly:

e ¢; =1is word t’s embedding
e h; = is the ¢-th output of the RNN cell; H = is the full matrix of RNN outputs
® Nieans Pmag are the mean and max of the RNN outputs along the time dimension

e 0 = Ulhmean; hmaz] + b is the logit vector. Note U has row-dimension equal to # classes.

We focused on two network “flavors”, bi-directional (BD) and attention (ATTN), fitting gated recur-
rent unit (GRU) and long-short-term memory (LSTM) versions of each. For the BD network, h; is
the concatenated vector containing the output vectors of word ¢ from both a forward and backward
run through the sentence. For the ATTN network, we added a 150 x 150 weight matrix W, to the
network, and computed two attention vectors:

WoH), amas = softmax(h!

/
Gmean = softmax(h -

mean Wa H)

Then the final dense layer is instead given [Rmean; Pmaz; H@mean; H@maz]- Note that when the
network is also bi-directional, each of those vectors are twice their usual length. Our best results
came from RNNs with both BD and ATTN mechanisms, seen in Tables 2-3, though the gains were
extremely incremental. We print results from RNNs with only BD or ATTN in the Supplemental.

We provide further commentary in the Discussion (Section 6).

cell identity_hate insult obscene severe_toxic threat toxic averages
8 gru 09613 09835 0.9879 0.9860 0.9630 0.9748 0.976083
9 lIstm 0.9569 0.9834 0.9875 0.9865 09617 0.9732 0.974867

cell aggression attack averages

9 gmu 0.9621 0.9683 0.9652
10 Istm 0.9621 0.9687 0.9654

Table 2: Un-flavored RNN results (top:Jigsaw, bottom:Detox)

cell identity_hate insult obscene severe_toxic threat toxic averages
14 gru 09745 0.9853 0.9887 0.9882 09763 09776 0.981767
15 Istm 09736 0.9850 0.9889 0.9882 0.9755 0.9775 0.981450

cell aggression attack averages

15 gru 09642 0.9699 0.96705
16 Istm 0.9640 0.9697 0.96685

Table 3: RNN results with bi-directional and attention mechanisms (top:Jigsaw, bottom:Detox)

For each data set, we examined the top-100 comments from three categories: truly-toxic comments
with the lowest losses (t-wins), truly-toxic comments with the highest losses (t-misses), and truly-
safe comments with the highest losses (s-misses). These helped us look at the features of truly-toxic

comments which were best-learned (t-wins), the features of truly-toxic comments which caused
mistakes (t-misses), and the truly-safe comments which probably could have been toxic had the
raters voted slightly differently (s-misses). For each of these top 100 comments, we also printed
the 5 tokens from the sentence with the highest a,,,cqr attention scores. The full comment lists, and
some discussion, can be found in the supplemental docs.

4 Character-level RNNs

One of the challenging aspects of toxic comment classification is that comments are unedited and
slang-filled. The most appealing feature of a character-level model in this case is that this issue of
unusual vocabulary words is sidestepped. Due to the small number of English characters, we also
eliminate the need for a large embedding matrix. Two approaches were taken in constructing the
inputs to the character-level model. Our first approach was to simply one-hot encode each character,
while the second approach used dense character vectors constructed from pretrained GloVe word
embeddings. Our word vector to character vector process consisted of the following steps: for all
occurrences of a given character in the GloVe vocabulary, we take the sum of the word vectors for
which each character has occurred and divide by number of occurrences of given character. As a
toy example, if our vocabulary were ’the, dog, eats’ and we wished to find the character embedding
for e’ we would take the mean of the word embeddings of ’the’ and ’eats.’ This method was
able to leverage the large dataset that the GloVe vectors were trained on and capture similarities
between characters. The method was evaluated using Principal Component Analysis, which allowed
us to visualize the characters in two dimensions. Numerals 0-9 were grouped together, as were the
majority of capital-lower case pairs.

Architecturally, the character-level models were very similar to the word-level RNNSs, substituting
our character embeddings for the pretrained GloVe embeddings (see Section 3). However, for the
character-level models we used only max-pooling and increased the number of neurons in our hidden
layer to 256. As with our word-level model, we compare a gated recurrent unit (GRU) and long-
short-term-memort (LSTM). The results are presented in the tables below and we elaborate in our
discussion section.

cell identity_hate insult obscene severe_toxic threat toxic averages
1 gruS0 0.8887 0.9082 0.9099 0.9499 09188 0.8823 0.909454
2 1stm50 0.8761 0.8886 0.8921 0.9381 0.8966 0.8681 0.893289
cell identity_hate insult obscene severe_toxic threat toxic averages
1 grul50 0.9299 0.9558 0.9570 0.9754 0.9447 0.9273 0.948344
2 gru200 0.9384 0.9564 0.9604 09792 09481 0.9325 0.952525

S Experiments with custom embeddings

Our first approach to training the baseline models relied on frequency based tokenizers. While
this enabled us to quickly iterate on the architectures during development, it did not provide easily
accessible insights into how the sentences were being modeled and what types of words assumed
similar meanings in the comments. This shortcoming, coupled with our interest in building vectors
more tailored to our corpus, motivated us to training our own GloVe model.

Our training corpus contained 210,554 tokens and we used either the top 10,000 or 100,000 most
frequently occurring ones, compared to 6 billion and 400,000 in [9]. This inherently skewed how
our vectors were trained since common words often occurred with low frequencies in our corpus.
For example, the token "woman” did not break into the top 1,500 most frequently occurring ones.
Because of the nature of context based models, this clearly limited how well the true meaning of
”woman” was interpreted at testing time.

The custom embeddings were assessed using T-distributed Stochastic Neighbor Embedding (t-SNE)
[5] to visualize them in two dimensions. Figure 1 displays a small collection of words that include
common tokens, analogy pairs, and typically positive or negative words.

3F Stupid

.qirl

.Iove
Jvoman

pated®!

’goodpe
1l Jnan

=3} Jreat

-8 -6 -4 =2 0 2 4 6 8 10

Figure 1: t-SNE Visualization of Custom Embeddings

As a validation, commonly used words shared the same vector space (’is”, ’the”). While it devel-
oped some intuition for the analogy task, it also faced difficulty as the distance between “woman”
and “girl” was nearly inverse to that between “man” and ”boy”. This may highlight how the words
are used much differently in the context of these comments, such as how “man” is used to address
someone else in a conversation.

The experiments we ran varied a combination of the following hyperparameters:

e Embedding size, 50 (default) or 100

e [earning rate, 0.05 (default) or 0.1

e Number of most frequently occurring words, either 10,000 (default) or 100,000
e Window size (symmetric), 5 (default) or 10

We assessed the accuracy of each experiment by using the embeddings for classifying comments
with a logistic regression baseline. This enabled us to quickly compare the generated embeddings
against each other during development as well as in isolation of any performance changes due to the
RNN models.

As [9] found changing the dimensionality of the embedding resulted in one of the most significant
increases in accuracy, the first experiments ran compared the performance of embeddings while
maintaining a constant number of features. Table 4 includes results from a subset of the experiments
run with an embedding size of 50.

Table 4: AUC by Window Size, Learning Rate, and Vocabulary Length

toxic severe_toxic obscene threat insult identity_hate average
10/0.05/10K 0.6722 0.7773 0.7192 0.7184 0.7063 0.7451 0.7231
5/0.05/10K 0.6709 0.7472 0.7017 0.7568 0.7048 0.7467 0.7214
10/0.1/10K 0.6557 0.7858 0.7069 0.7207 0.6937 0.7191 0.7137
10/0.05/100K 0.6780 0.7868 0.7130 0.7586 0.7097 0.6979 0.7240

While increasing the number of words under consideration resulted in a marginally higher average
AUC, it was also at the cost of a much longer training time. Increasing the learning rate saw the
worst performance and may have been caused by overfitting to the training set, which was only
exacerbated by limiting the vocabulary to the 10,000 most frequently occurring tokens. Reducing
the window size by 5 offered the most attractive approach since it significantly reduced the training
time and maintained a similar level of accuracy.

The best performing embeddings achieved an AUC score of 77.01% with the logistic regression
baseline. Barring reducing the window size to 5 and increasing the embedding size to 100, the rest
of the hyperparameters remained at the default values.

Retaining accuracy while reducing the window size also suggests that toxic tokens affecting each of
these categories occur near each other. For example, accusatory statements such as this is blatant
discrimination and gang behavior” or personal attacks like “number 57 is an absolute disgrace” sug-
gest that decreasing the window size could retain comparable predictive information while offering
a significant efficiency boost.

We then tried initializing the custom embeddings with pretrained GloVe vectors. This approach
resulted in a huge increase in performance and the average AUC jumped to 91.69%. Unsurprisingly,
incorporating the meaning of words from much broader contexts significantly helped our model
by incorporating information from more experience. See the supplementary material for a t-SNE
visualization of the same words as were included in Figure 1. Table 5 includes the results for using
those embeddings with the word-level RNNs results.

cell identity_hate insult obscene severe_toxic threat toxic averages
2 gru 0.9669 0.9829 0.9872 0.9873 0.9683 0.9732 0.9776
4 lIstm 0.9674 09831 0.9872 0.9869 0.9698 0.9726 0.9778

Table 5: RNN Results on Toxic Dataset with Custom Embeddings

6 Discussion

In this paper we built a wide range of recurrent neural network models for the task of classifying
abusive comments authored by users of Wikipedia. This is a challenging NLP task because the
number of positive examples is low, comments were allowed to be in multiple classes, and the text
of the comments contain highly non-standard vocabulary. Our first finding was that, surprisingly,
non-neural baseline models based on TFIDF sentence vectors perform quite well. One hypothesis
for this is that expletives are highly indicative of abuse, and often easily tokenized (this hypothesis
was supported by analysis of attention scores and comments with low losses from the RNN models).
Standard GRU and LSTM RNNs based on pre-trained word embeddings offered marginal improve-
ment over the non-neural baseline models, and bi-directional and attention mechanisms again add
marginal improvement over the baseline RNNs. A future research area for word-level models is to
examine which particular types of words had high attention scores for particular comment classes.
This could yield deeper insights into the character of online abuse.

Character-level models offer a potential way to addressing the out of vocabulary problem common
in online comments, due to the high frequency of slang and lack of edits. However, breaking the
comment into its character level token increases the total number of tokens by a magnitude of ap-
proximately 5 as compared to word-level tokens, thus requiring significantly more training time to
reach the same amount of data. While there is a training time increase, we see a decrease in memory
required as the character embedding matrix is much smaller than the corresponding word matrix.
Even through the use of character embeddings inferred from GloVe word embeddings, performance
of the character-level model was not on par with that of the word-level models. Given the similarity
of the architecture we employed between the two models, this supports the notion that expletives
and slurs are highly indicative of abuse, a baked in feature unavailable to the character-level model.
A future avenue of research to pursue would be an architecture that attempts to infer word-level
features from character-level input.

Using custom word embeddings saw a marginally low decrease in the word level GRU and LSTM
accuracies. This may suggest that training on the corpus skewed the meanings too much towards the
training set. Since only the top 10,000 most often occurring words were considered when building
the cooccurrence matrix, some variants of toxic words may have been given less focus despite having
significant impacts on the overall sentiment. Given more computational resources, varying the size
of the most frequent words considered and reducing the threshold for how many times a pair must
occur could shed more light onto this gap. Another area to pursue further could be a deeper analysis
of the differences between the vectors initialized randomly and those not, specifically looking at
how they converge during training. Through comparison, a stronger intuition could be derived as to
how the words were represented in the context of the corpus.

Through experimentation and developing state of the art models we were able to achieve a high
accuracy with predicting toxic comments. With finer tuning and a deeper look into efficiency gains,
we hope that our models could be deployed in production environments to catch inflammatory
comments before they reach vulnerable users. Moreover, with online communities and internet-
connected devices increasingly accessible to younger audiences, we hope that research like this will
contribute to creating a safer environment for all.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16,
pages 265-283, 2016.

[2] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma. Deep learning for hate speech detection in
tweets. In Proceedings of the 26th International Conference on World Wide Web Companion,
pages 759-760. International World Wide Web Conferences Steering Committee, 2017.

[3] T. Chu, K. Jue, and M. Wang. Comment abuse classification with deep learning. 2017.

[4] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[5] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579-2605, 2008.

[6] Y. Mehdad and J. Tetreault. Do characters abuse more than words? In Proceedings of the 17th
Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 299-303,
2016.

[7] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang. Abusive language detection in
online user content. In Proceedings of the 25th international conference on world wide web,
pages 145-153. International World Wide Web Conferences Steering Committee, 2016.

[8] J. Pavlopoulos, P. Malakasiotis, and I. Androutsopoulos. Deeper attention to abusive user
content moderation. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1125-1135, 2017.

[9] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation,
2014.

[10] L. Rainee, J. Anderson, and J. Albright. The future of free speech, trolls, anonymity and fake
news online, 2017.

[11] A. Schmidt and M. Wiegand. A survey on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International Workshop on Natural Language Processing
for Social Media, pages 1-10, 2017.

[12] E. Wulczyn, N. Thain, and L. Dixon. Ex machina: Personal attacks seen at scale. In Proceed-
ings of the 26th International Conference on World Wide Web, pages 1391-1399. International
World Wide Web Conferences Steering Committee, 2017.

[13] E. Wulczyn, N. Thain, and L. Dixon. Wikipedia talk labels: Aggression. 2 2017.
[14] E. Wulczyn, N. Thain, and L. Dixon. Wikipedia talk labels: Personal attacks. 2 2017.

