
Application of Deep Learning to Algorithmic Trading

Guanting Chen [guanting]1, Yatong Chen [yatong]2, and Takahiro Fushimi [tfushimi]3

1Institute of Computational and Mathematical Engineering, Stanford University
2Department of Civil and Environmental Engineering, Stanford University

3Department of Management Science and Engineering, Stanford University

I. INTRODUCTION

Deep Learning has been proven to be a powerful
machine learning tool in recent years, and it has a
wide variety of applications. However, applications of
deep learning in the field of computational finance are
still limited (Arévalo, Niño, Hernández & Sandoval,
2016). In this project, we implement Long Short-Term
Memory (LSTM) network, a time series version of
Deep Neural Networks, to forecast the stock price of
Intel Corporation (NASDAQ: INTC). LSTM was first
developed by Hochreiter & Schmidhuber (1997). Over
the years, it has been applied to various problems that
involve sequential data, and research has demonstrated
successful applications in such fields as natural language
processing, speech recognition, and DNA sequence.

The input features we use are categorized into three
classes: (1) the historical trading data of INTC (OHLC
variables), (2) commonly used technical indicators
derived from OHLC variables, and (3) the index of
the financial market and the semiconductor sector are
fed into the network. All of these features reflect daily
values of these variables, and the network predicts the
next day’s adjusted closing price of INTC based on
information available up to the current day.

Our experiment is composed of three steps. First, we
choose the best model by training the network and
evaluating its performance on a dev set. Second, we
make a prediction on a test set with the selected model.
Third, given the trained network, we examine the
profitability of an algorithmic trading strategy based
on the prediction made by the model. For the sake of
comparison, Locally Weighted Regression (LWR) is also
performed as a baseline model.

The rest of this paper is organized as follows: Sec-
tion II discusses existing papers and the strengths and
weaknesses of their models. Section III describes the
dataset used in the experiment. Section IV explains the
models. Section V defines the trading strategy. Section
VI illustrates the experiment and the results. Section VII
is the conclusion, and Section VIII discusses future work.

II. RELATED WORK

Existing studies that apply classical neural networks with
a few numbers of hidden layers to stock market prediction
problems have had rather unsatisfactory performance.
For instance, Sheta, Ahmed & Faris (2015) examines
Artificial Neural Network (ANN) with 1 hidden layer in
addition to multiple linear regression and Support Vector
Machine (SVM) with a comprehensive set of financial
and economic factors to predict S&P500 index. Even
though these methods can forecast the market trend if
they are correctly trained, it is concluded that SVM with
RBF kernel outperforms ANN and the regression model.
Guresen, Kayakutlu & Daim (2011) analyzes some
extensions of ANN such as dynamic artificial neural
network and the hybrid neural networks which use
generalized autoregressive conditional heteroscedasticity.
Their experiment, however, demonstrates that these
sophisticated models are unable to forecast NASDAQ
index with a high degree of accuracy.

On the other hand, Deep Learning models with multiple
layers have been shown as a promising architecture that
can be more suitable for predicting financial time series
data. Arevalo et al., (2016) trains 5-layer Deep Learning
Network on high-frequency data of Apple’s stock price,
and their trading strategy based on the Deep Learning
produces 81% successful trade and a 66% of directional
accuracy on a test set. Bao, Yue & Rao (2017) proposes
a prediction framework for financial time series data that
integrates Wavelet transformation, Stacked Autoencoders,
and LSTM. Their network with 10 hidden layers out-
performs the canonical RNN and LSTM in terms of
predictive accuracy. Takeuchi & Lee (2013) also uses
a 5-layer Autoencoder of stacked Boltzmann machine
to enhance Momentum trading strategies that generates
45.93% annualized return.

III. DATASET AND FEATURES

A. Dataset
Our raw dataset is the historical daily price data of INTC
from 01/04/2010 to 06/30/2017, sourced from Yahoo!
Finance. In order to examine the robustness of the models
in different time periods, the dataset is devided into three
periods.

Fig. 1: Stock price of Intel from 01/04/2010 to 06/30/2017. The black
arrows indicate the training sets, the red arrows indicate the dev sets,
and the blue arrows indicate the of test sets.

Period I ranges from 01/04/2010 to 06/29/2012. Period II
ranges from 07/02/2012 to 12/31/2014. Period III ranges
from 01/02/2015 to 06/30/2017. Furthermore, we divide
each sub-dataset into the training set, the dev set and
the test set, and the length of their periods is 2 years, 3
months, and 3 months, respectively. The historical stock
price of INTC is shown in Figure 1, which also illustrates
how we split the data into the three different sets.

B. Input Features

The input features consist of three sets of variables. The
first set is the historical daily trading data of INTC includ-
ing previous 5 day’s adjusted closing price, log returns,
and OHLC variables. These features provide basic infor-
mation about INTC stock. The second set is the technical
indicators that demonstrate various characteristics of the
stock’s behavior. The third set is about indexes: S&P500,
CBOE Volatility Index, and PHLX Semiconductor Sector
Index. Figure 2 describes the details of these variables.
All of the inputs and output are scaled between 0 and 1
before we feed them into the models.

Fig. 2: Descriptions of the input features [2]

IV. METHODS

A. Long Short-Term Memory

Long Short-Term Memory (LSTM) was first developed
by Hochreiter & Schmidhuber (1997) as a variant of
Recurrent Neural Network (RNN). Over the years,
LSTM has been applied to various problems that
involve sequential data, and research has demonstrated
successful applications in such fields as natural language
processing, speech recognition, and DNA sequence.

Like RNN, LSTM has a recurrent structure where each
cell not only outputs prediction ŷt but also transfers
activation ht to the next cell. The striking feature of
LSTM is its ability to store, forget, and read information
from the long-term state of the underlying dynamics,
and these tasks are achieved through three types of
gates. In the forget gate, a cell receives long-term state
ct−1, retains some pieces of the information by amount
ft, and then adds new memories that the input gate
selected. The input gate determines what parts of the
transformed input gt need to be added to the long-term
state ct. This process updates long-term state ct, which
is directly transmitted to the next cell. Finally, output
gate transforms the updated long-term state ct through
tanh(·), filters it by ot, and produces the output ŷt,
which is also sent to the next cell as the short-term state
ht.

The equations for LSTM computations are given by

it = σ(W T
xi · xt +W T

hi · ht−1 + bi)

ft = σ(W T
xf · xt +W T

hf · ht−1 + bf)

ot = σ(W T
xo · xt +W T

ho · ht−1 + bo)

gt = tanh(W T
xg · xt +W T

hg · ht−1 + bg)

ct = ft ⊗ ct−1 + it ⊗ gt
ŷt = ht = ot ⊗ tanh(ct)

where ⊗ is element-wise multiplication, σ(·) is the
logistic function, and tanh(·) is the hyperbolic tangent
function. The three gates open and close according to
the value of the gate controllers ft, it, and ot, all of
which are fully connected layers of neurons. The range
of their outputs is [0, 1] as they use the logistic function
for activation. In each gate, their outputs are fed into
element-wise multiplication operations, so if the output
is close to 0, the gate is narrowed and less memory is
stored in ct, while if the output is close to 1, the gate is
more widely open, letting more memory flow through
the gate. Given LSTM cells, it is common to stack
multiple layers of the cells to make the model deeper
to be able to capture nonlinearity of the data. Figure 3
illustrates how computation is carried out in a LSTM cell.

Fig. 3: LSTM cell [3]

We choose Mean Squared Error (MSE) with L2-
regularization on the weights for the cost function:

L(θ) =
1

m

m∑
t=1

(yt − ŷt)2

+ λ (||Wi||2 + ||Wf ||2 + ||Wo||2)

where θ is the set of parameters to be trained including
the weight matrices for each gate {Wi = (Wxi;Whi),
Wf = (Wxf ;Whf), Wo = (Wxo;Who)}, and the bias
terms {bi, bf , bo, bg}.

Since this is a RNN, LSTM is trained via Backprop-
agation Through Time. The key idea is that for each
cell, we first unroll the fixed number of previous cells
and then apply forward feed and backpropagation to the
unrolled cells. The number of unrolled cells is another
hyperparameter that needs to be selected in addition to
the number of neurons and layers.

B. Locally Weighted Linear Regression:

Locally Weighted Linear Regression is a nonparametric
model that solves the following problem at each target
point x0:

θ(x0) = argmin
θ

1

2
(Xθ − y)TW (x0)(Xθ − y).

X ∈ Rm,n is the matrix of covariates, and y ∈
Rm is the outcome. The weight matrix W (x0) =
diag{w1, · · · , wm} measures the closeness of x0 relative
to the observed points xt, t = 1, · · · ,m. The closer x0 is
to xt, the higher the value of wt. The Gaussian kernel is
chosen as the weight:

wt(x0) = exp

(
−(xt − x0)2

2τ2

)
where τ is a hyper parameter that controls the window
size. The closed form solution of the optimization prob-
lem is

θ̂(x0) = (XTW (x0)X)−1XTW (x0)y.

The predicted value at the new target point x is

ŷ = xT θ̂(x)

= xT (XTW (x)X)−1XTW (x)y.

Although the model is locally linear in y, computing ŷ
over the entire data set produces a curve that approxi-
mates the true function.

V. TRADING STRATEGY

We consider a simple algorithmic trading strategy based
on the prediction by the model. At day t, an investor buys
one share of INTC stock if the predicted price is higher
than the current actual adjusted closing price. Otherwise,
he or she sells one share of INTC stock. The strategy st
can be described as:

st =

{
+1 if ŷt+1 > yt

−1 if ŷt+1 ≤ yt

where yt is the current adjusted closing price of INTC
and ŷt+1 is the predicted price by the model. Using the
indicator variable st, we can calculate a daily return of
the strategy at day t+ 1:

rt+1 = st × log

(
yt+1

yt

)
− c

where c denotes transaction cost, and the cumulative
return from t = 0 to m is

rm0 =

m−1∑
t=0

rt.

We also consider the Sharpe Ratio to compare the prof-
itability of the strategy with different models. The Sharpe
Ratio is defined as

SR =
E(r)− rf
σ(r)

.

E(r) is the expected return of a stock, rf is the risk-free
rate, and σ(r) is the standard deviation of the return.

VI. EXPERIMENT AND RESULTS

A. Setup for the Experiment

We use TensorFlow to perform our experiment on the
dataset. The choice of hyperparameters and optimizer are
listed in Table I:

Categories Choice
Library TensorFlow

Optimizer AdamOptimizer
The number of Hidden Layers 5
The number of Unrolled Cells 10

The number of Neurons 200
The number of Epochs 5000

TABLE I: Hyperparameters/Optimizer for the LSTM Model

Fig. 4: MSE on the training and dev sets with different values of λ
(The points indicate the lowest MSE on the dev set for each period)

We choose 5 layers in line with the networks used by
Arevalo et al., (2016), Bao et al., (2017), and Takeuchi,
& Lee (2013). Regarding the number of unrolled cells,
10 (days) is assumed to be sufficient for the LSTM
to predict the next day’s stock price and avoid the
vanishing gradient problem. The number of neurons is
determined by try and error.

Since the architecture of the LSTM is 5 layers with
200 neurons, which is deep and wide, it is necessary
to introduce regularization as discussed in Section
IV in order to avoid overfitting and improve the
predictive accuracy. For each period, we train the
network with different values of λ that controls the
degree of regularization and compute MSE on the
training and dev set. The set of values of λ we consider
is 0.1n(n = 2, · · · , 8) and 0 that corresponds to no
regularization. The MSE on the training and dev sets
with different λ’s is illustrated in Figure 4. We select the
λ that minimizes the MSE on dev set which is depicted
as points in the plot.

AdamOptimizer is selected because it is suitable for
deep learning problems with large dataset and many
parameters. As for the parameters of AdamOptimizer, we
use the default values provided by Tensorflow.

B. The results of the experiment

Figure 5 shows the predicted stock price by both models
and the actual price of INTC. The predicted prices of
the LSTM are closer to the actual price than the ones of
the LWR for all the three periods. It is important to note
that the LSTM seems to be able to predict the stock
price more accurately when the price does not exhibit a
clear trend such as the first and third periods than when
the price is boosting like the second period where the
LSTM constantly underestimates it.

To further evaluate the predictive performance of the
models, we calculate two measurements and examine

Fig. 5: Predicted and actual price of Intel for three periods (scaled)

the profitability of the algorithmic trading strategy.

1) Mean Squared Error of Predicted Price:

MSE =
1

m

m∑
t=1

(yt − ŷt)2

where yt and ŷt denote the actual and predicted prices of
INTC at day t. The MSE of the both models are listed in
Table II. The MSE of the LSTM on the test sets turns out
to be small and lower than that of the LWR Models for all
the three periods. This result substantiates that the LSTM
achieves higher predictive accuracy than the LWR.

Period Train Error Dev Error Test Error
LSTM LWR LSTM LWR LSTM LWR

I 0.00122 0.05571 0.00436 0.10617 0.00564 0.05362
II 0.00051 0.00702 0.00984 0.04488 0.00772 0.01548
III 0.00056 0.09385 0.01568 0.03331 0.01146 0.02147

TABLE II: The MSE of the LSTM and LWR for the three periods

2) Directional Accuracy:

DA =
1

m− 1

m−1∑
t=1

1{(yt+1 − yt)(ŷt+1 − ŷt) > 0}

1{·} is the indicator function. This measures the propor-
tion of the days when the model forecasts the correct
direction of price movement. The DA on the test set
is summarized in Table III. The LSTM accomplishes

80.328% and 70.968% for the first and third periods,
while the prediction by the LWR is slightly higher than
random guess in the same periods. The second period in
which the price of INTC continued to rise appears to be a
challenging moment for both models to make an accurate
prediction.

Period LSTM LWR
I 80.328 57.377
II 59.616 45.902
III 70.968 57.377

TABLE III: Directional accuracy(%) of the LSTM and LWR for three
periods

3) Cumulative Daily Returns and Sharpe Ratio:

rm0 =

m−1∑
t=0

rt and SR =
E(r)− rf
σ(r)

as defined in Section V. The cumulative daily returns and
the Sharpe Ratio for the strategy based on the LSTM
and the LWR are shown in Table IV. The transaction
cost of each trade is assumed to be 1 basis point. 13
week treasury bill rate (IRX) is used as the risk-free
rate. As a comparison, we also consider a Buy-and-Hold
strategy in which an investor buys one share of INTC at
the beginning of a test set and holds it until the end of
the period. The LSTM-based strategy produces promising
cumulative returns and the Sharpe Ratio. In particular,
the strategy yields a 54.8% cumulative daily return and a
0.649 Sharpe Ratio during the first period despite the neg-
ative return of INTC (i.e., Buy-and-Hold strategy). The
LWR also generates higher returns and Sharpe Ratio than
the Buy-and-Hold strategy, but the LSTM substantially
outperforms the LWR. Figure 6 illustrates the cumulative
daily returns of the strategies. The return of the LSTM-
based strategy stably increases over time in the first and
second periods.

Period LSTM LWR Buy& Hold
Returns SR Returns SR Returns SR

I 54.8% 0.649 25.5% 0.292 -8.3% -0.108
II 28.6% 0.257 15.3% 0.141 10.4% 0.088
III 16.9% 0.267 5.4% 0.128 -6.6% -0.085

TABLE IV: Cumulative daily returns and the Sharpe Ratio of the
strategies for three periods

VII. CONCLUSION

In this project, we implement Long Short-Term Memory
Network to predict the stock price of INTC and apply
the trained network to the algorithmic trading problem.
The LSTM can accurately predict the next day’s price of
INTC especially when the stock price is lack of a trend.
The strategy based on the prediction by the LSTM makes
promising cumulative daily returns, outperforming the
other two strategies. These results, however, are limited

Fig. 6: Cumulative daily return of the Buy-and-Hold (blue line), the
LSTM-based (green), and the LWR-based (red line) strategies.

in some respects. We assume that it is always possible
to trade at the adjusted closing price every day, which
is not feasible in practice. Yet, our study demonstrates
the potential of LSTM in stock market prediction and
algorithmic trading.

VIII. FUTURE WORK

Due to the computational limitation, we were unable
to conduct a comprehensive experiment to train various
architectures of the LSTM such as different numbers of
neurons and layers. Also, one of the biggest weaknesses
of our LSTM is that it cannot capture a sheer trend
like the one observed in the test set of the second
period. Thus, a possible extension of our approach can
be to increase the number of layers to make the network
even deeper and build the trading strategy combined
with reinforcement learning that takes into account the
current state of the market. Another approach would be
to make the network event-driven so that it can respond
to structural changes in the financial market.

IX. CONTRIBUTION

All team members contributed to the progress of the
project. Specific work assignment is as follows. Takahiro
Fushimi implemented LSTM using TensorFlow, created
figures, and wrote the final report. Yatong Chen wrote the
milestone and final reports, performed analysis, and made

poster. Guanting Chen helped processing and testing data,
advised machine learning methods, and implemented
machine learning models.

REFERENCES

[1] Arévalo, A., Niño, J., Hernández, G., & Sandoval, J. (2016,
August). High-frequency trading strategy based on deep neural
networks. In International conference on intelligent computing
(pp. 424-436). Springer International Publishing.

[2] Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework
for financial time series using stacked autoencoders and long-
short term memory. PloS one, 12(7), e0180944.

[3] Géron, A. (2017). Hands-on machine learning with Scikit-
Learn and TensorFlow: concepts, tools, and techniques to build
intelligent systems.

[4] Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using
artificial neural network models in stock market index prediction.
Expert Systems with Applications, 38(8), 10389-10397.

[5] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780.

[6] Sheta, A. F., Ahmed, S. E. M., & Faris, H. (2015). A comparison
between regression, artificial neural networks and support vector
machines for predicting stock market index. Soft Computing, 7,
8.

[7] Takeuchi, L., & Lee, Y. Y. A. (2013). Applying deep learning to
enhance momentum trading strategies in stocks. Working paper,
Stanford University.

	Introduction
	Related Work
	Dataset and Features
	Dataset
	Input Features

	Methods
	Long Short-Term Memory
	Locally Weighted Linear Regression:

	Trading Strategy
	Experiment and Results
	Setup for the Experiment
	The results of the experiment
	Mean Squared Error of Predicted Price
	Directional Accuracy
	Cumulative Daily Returns and Sharpe Ratio

	CONCLUSION
	FUTURE WORK
	CONTRIBUTION
	References

